Properties

Label 8-1152e4-1.1-c1e4-0-9
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $7160.08$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s + 18·11-s − 12·17-s − 10·25-s + 10·27-s + 36·33-s − 6·41-s + 30·43-s + 14·49-s − 24·51-s + 18·59-s + 42·67-s + 4·73-s − 20·75-s + 20·81-s − 72·89-s − 10·97-s + 54·99-s − 36·113-s + 169·121-s − 12·123-s + 127-s + 60·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s + 5.42·11-s − 2.91·17-s − 2·25-s + 1.92·27-s + 6.26·33-s − 0.937·41-s + 4.57·43-s + 2·49-s − 3.36·51-s + 2.34·59-s + 5.13·67-s + 0.468·73-s − 2.30·75-s + 20/9·81-s − 7.63·89-s − 1.01·97-s + 5.42·99-s − 3.38·113-s + 15.3·121-s − 1.08·123-s + 0.0887·127-s + 5.28·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(7160.08\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.946431577\)
\(L(\frac12)\) \(\approx\) \(8.946431577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 6 T + p T^{2} )^{2}( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 - 10 T + 57 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \)
47$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \)
61$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 2 T - 69 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$C_2$ \( ( 1 + 18 T + p T^{2} )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.83160611092981703113557860497, −6.74831441716752133609682809311, −6.57625797432621719292953057777, −6.56085874468274761400507717713, −6.43230693778441145620554582484, −5.95117971439054158791494401243, −5.59403037148366398078113934628, −5.53489714490957096318361889190, −5.41502627198971662207472655108, −4.69384375454561129067102536872, −4.33943386328514172338208420114, −4.31938108324707879166464812781, −4.28072865889084406838617323534, −3.83997206633136918725499204307, −3.81790531014624614918755930043, −3.62993230901450466904051278201, −3.61428016264488997907405308835, −2.54733783820364604819152799462, −2.46950336005498249771140739518, −2.46541427700679762506862713237, −2.22609879932618066474748082400, −1.37067479429201724708762190799, −1.34061555251091415807904713298, −1.28075714711927147277216650166, −0.57812065755926670835597167160, 0.57812065755926670835597167160, 1.28075714711927147277216650166, 1.34061555251091415807904713298, 1.37067479429201724708762190799, 2.22609879932618066474748082400, 2.46541427700679762506862713237, 2.46950336005498249771140739518, 2.54733783820364604819152799462, 3.61428016264488997907405308835, 3.62993230901450466904051278201, 3.81790531014624614918755930043, 3.83997206633136918725499204307, 4.28072865889084406838617323534, 4.31938108324707879166464812781, 4.33943386328514172338208420114, 4.69384375454561129067102536872, 5.41502627198971662207472655108, 5.53489714490957096318361889190, 5.59403037148366398078113934628, 5.95117971439054158791494401243, 6.43230693778441145620554582484, 6.56085874468274761400507717713, 6.57625797432621719292953057777, 6.74831441716752133609682809311, 6.83160611092981703113557860497

Graph of the $Z$-function along the critical line