Properties

Label 8-1152e4-1.1-c0e4-0-0
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $0.109254$
Root an. cond. $0.758236$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·49-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  − 4·49-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(0.109254\)
Root analytic conductor: \(0.758236\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8057698256\)
\(L(\frac12)\) \(\approx\) \(0.8057698256\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + T^{4} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.27303512395662761156427371385, −6.82479710757392465753180640923, −6.73283601041645292928138877343, −6.62493620497504100776350074793, −6.36037881166079769658999251801, −6.24464345949396607014312935750, −5.77975721144684164692655753849, −5.77914247163796537194159575314, −5.39229759305115307216307119454, −5.12333072742999378008992649051, −5.01147990142026700891968148701, −4.65905070814679167101539162825, −4.65305696879996544277111566046, −4.19946092318241915619863649394, −3.94250452564572894717490706497, −3.69224925260578778810051882166, −3.49831560605953047502453314750, −3.21110176112132681611861235441, −2.80269654150583840512696627740, −2.62381756048251923175897022981, −2.48919903996984099744771376927, −1.69588644847303352507954150731, −1.66556699678536343319573575223, −1.47995591810136245514367711367, −0.64291267251029234845886976374, 0.64291267251029234845886976374, 1.47995591810136245514367711367, 1.66556699678536343319573575223, 1.69588644847303352507954150731, 2.48919903996984099744771376927, 2.62381756048251923175897022981, 2.80269654150583840512696627740, 3.21110176112132681611861235441, 3.49831560605953047502453314750, 3.69224925260578778810051882166, 3.94250452564572894717490706497, 4.19946092318241915619863649394, 4.65305696879996544277111566046, 4.65905070814679167101539162825, 5.01147990142026700891968148701, 5.12333072742999378008992649051, 5.39229759305115307216307119454, 5.77914247163796537194159575314, 5.77975721144684164692655753849, 6.24464345949396607014312935750, 6.36037881166079769658999251801, 6.62493620497504100776350074793, 6.73283601041645292928138877343, 6.82479710757392465753180640923, 7.27303512395662761156427371385

Graph of the $Z$-function along the critical line