Properties

Label 8-10e8-1.1-c2e4-0-0
Degree $8$
Conductor $100000000$
Sign $1$
Analytic cond. $55.1239$
Root an. cond. $1.65069$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 60·11-s − 56·31-s − 156·41-s + 368·61-s − 408·71-s + 81·81-s − 96·101-s + 1.76e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 5.45·11-s − 1.80·31-s − 3.80·41-s + 6.03·61-s − 5.74·71-s + 81-s − 0.950·101-s + 14.5·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(55.1239\)
Root analytic conductor: \(1.65069\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.05991266295\)
\(L(\frac12)\) \(\approx\) \(0.05991266295\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
7$C_2^3$ \( 1 - 2302 T^{4} + p^{8} T^{8} \)
11$C_2$ \( ( 1 + 15 T + p^{2} T^{2} )^{4} \)
13$C_2^3$ \( 1 + 49154 T^{4} + p^{8} T^{8} \)
17$C_2^3$ \( 1 + 136559 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 433 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 342818 T^{4} + p^{8} T^{8} \)
29$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2}( 1 + 40 T + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
37$C_2^3$ \( 1 - 2728222 T^{4} + p^{8} T^{8} \)
41$C_2$ \( ( 1 + 39 T + p^{2} T^{2} )^{4} \)
43$C_2^3$ \( 1 - 597598 T^{4} + p^{8} T^{8} \)
47$C_2^3$ \( 1 - 8995486 T^{4} + p^{8} T^{8} \)
53$C_2^3$ \( 1 - 5984062 T^{4} + p^{8} T^{8} \)
59$C_2^2$ \( ( 1 - 6926 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 92 T + p^{2} T^{2} )^{4} \)
67$C_2^3$ \( 1 + 1364783 T^{4} + p^{8} T^{8} \)
71$C_2$ \( ( 1 + 102 T + p^{2} T^{2} )^{4} \)
73$C_2^3$ \( 1 + 56221679 T^{4} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 - 1666 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 10000417 T^{4} + p^{8} T^{8} \)
89$C_2^2$ \( ( 1 - 8273 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^3$ \( 1 - 174838462 T^{4} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12663606521312104299527401487, −10.03200107014382119866643329313, −9.497891816238118008906101293823, −9.194116320369010508571124158849, −8.532391733368428936304058810276, −8.339446672242895815054326697900, −8.319824931294298850157859651179, −8.165761712634884059439460832122, −7.50349323335030245185083330513, −7.34661908671223330660857759975, −7.13995274658889710804397063313, −6.97450910128623942551330582241, −6.09470816752731902514474223856, −5.93757779498629995785410231029, −5.38411535821729750399263491258, −5.15583856402041304581311932571, −5.14629085487707576902164514812, −4.90690938396703502495608259492, −4.09759739536253158914106714044, −3.57808428532582540422917974780, −3.12340895329761995479241918007, −2.63326025033742628133466937747, −2.42746653859259225954538169066, −1.81504161112618167300818922635, −0.10696868760892397094559084782, 0.10696868760892397094559084782, 1.81504161112618167300818922635, 2.42746653859259225954538169066, 2.63326025033742628133466937747, 3.12340895329761995479241918007, 3.57808428532582540422917974780, 4.09759739536253158914106714044, 4.90690938396703502495608259492, 5.14629085487707576902164514812, 5.15583856402041304581311932571, 5.38411535821729750399263491258, 5.93757779498629995785410231029, 6.09470816752731902514474223856, 6.97450910128623942551330582241, 7.13995274658889710804397063313, 7.34661908671223330660857759975, 7.50349323335030245185083330513, 8.165761712634884059439460832122, 8.319824931294298850157859651179, 8.339446672242895815054326697900, 8.532391733368428936304058810276, 9.194116320369010508571124158849, 9.497891816238118008906101293823, 10.03200107014382119866643329313, 10.12663606521312104299527401487

Graph of the $Z$-function along the critical line