Properties

Label 8-1078e4-1.1-c1e4-0-6
Degree $8$
Conductor $1.350\times 10^{12}$
Sign $1$
Analytic cond. $5490.14$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s + 2·8-s − 2·9-s + 2·11-s − 4·16-s + 4·18-s − 4·22-s − 12·23-s + 10·25-s − 16·29-s + 2·32-s − 2·36-s − 4·37-s + 40·43-s + 2·44-s + 24·46-s − 20·50-s − 4·53-s + 32·58-s + 3·64-s − 16·67-s + 64·71-s − 4·72-s + 8·74-s + 16·79-s + 9·81-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s + 0.707·8-s − 2/3·9-s + 0.603·11-s − 16-s + 0.942·18-s − 0.852·22-s − 2.50·23-s + 2·25-s − 2.97·29-s + 0.353·32-s − 1/3·36-s − 0.657·37-s + 6.09·43-s + 0.301·44-s + 3.53·46-s − 2.82·50-s − 0.549·53-s + 4.20·58-s + 3/8·64-s − 1.95·67-s + 7.59·71-s − 0.471·72-s + 0.929·74-s + 1.80·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 7^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(5490.14\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 7^{8} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.234735308\)
\(L(\frac12)\) \(\approx\) \(1.234735308\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7 \( 1 \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
good3$C_2^3$ \( 1 + 2 T^{2} - 5 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
5$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 26 T^{2} + 387 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^3$ \( 1 - 20 T^{2} + 39 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
31$C_2^3$ \( 1 - 12 T^{2} - 817 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
47$C_2^3$ \( 1 + 68 T^{2} + 2415 T^{4} + 68 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + 2 T - 49 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 167 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 167 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
61$C_2^3$ \( 1 - 24 T^{2} - 3145 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 - 74 T^{2} + 147 T^{4} - 74 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 8 T - 15 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 128 T^{2} + 8463 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 + 144 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23578761412582433242552160222, −7.00373500656771295472481831342, −6.58264945385010845091290977510, −6.45319301036509355692565872599, −6.16565291277193775863964397411, −6.00618605548551538378192941071, −5.81593142170049109768435747105, −5.65331695370207060271284626456, −5.13649040754469950502269705972, −5.06540838151111309884663631527, −4.96062900121633490672830171472, −4.36382061921744176456898733077, −4.32104686664175196371116493131, −3.93916196950605438771150927825, −3.70046234650284048089165966192, −3.60119681789291084263510779006, −3.38027428860066129907985008354, −2.74174831006288833916842200838, −2.52574081106356780936833481250, −2.11040485851714521394313151517, −1.97992678074676154169877537150, −1.85187184812690158034404391217, −0.905456057023445651646997909672, −0.835246760862546430766975005413, −0.47469420424988958869217618089, 0.47469420424988958869217618089, 0.835246760862546430766975005413, 0.905456057023445651646997909672, 1.85187184812690158034404391217, 1.97992678074676154169877537150, 2.11040485851714521394313151517, 2.52574081106356780936833481250, 2.74174831006288833916842200838, 3.38027428860066129907985008354, 3.60119681789291084263510779006, 3.70046234650284048089165966192, 3.93916196950605438771150927825, 4.32104686664175196371116493131, 4.36382061921744176456898733077, 4.96062900121633490672830171472, 5.06540838151111309884663631527, 5.13649040754469950502269705972, 5.65331695370207060271284626456, 5.81593142170049109768435747105, 6.00618605548551538378192941071, 6.16565291277193775863964397411, 6.45319301036509355692565872599, 6.58264945385010845091290977510, 7.00373500656771295472481831342, 7.23578761412582433242552160222

Graph of the $Z$-function along the critical line