Properties

Label 8-1014e4-1.1-c5e4-0-1
Degree $8$
Conductor $1.057\times 10^{12}$
Sign $1$
Analytic cond. $6.99510\times 10^{8}$
Root an. cond. $12.7526$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 36·3-s + 160·4-s − 10·5-s − 576·6-s + 72·7-s − 1.28e3·8-s + 810·9-s + 160·10-s − 702·11-s + 5.76e3·12-s − 1.15e3·14-s − 360·15-s + 8.96e3·16-s − 300·17-s − 1.29e4·18-s − 1.80e3·19-s − 1.60e3·20-s + 2.59e3·21-s + 1.12e4·22-s + 828·23-s − 4.60e4·24-s − 3.66e3·25-s + 1.45e4·27-s + 1.15e4·28-s − 1.68e3·29-s + 5.76e3·30-s + ⋯
L(s)  = 1  − 2.82·2-s + 2.30·3-s + 5·4-s − 0.178·5-s − 6.53·6-s + 0.555·7-s − 7.07·8-s + 10/3·9-s + 0.505·10-s − 1.74·11-s + 11.5·12-s − 1.57·14-s − 0.413·15-s + 35/4·16-s − 0.251·17-s − 9.42·18-s − 1.14·19-s − 0.894·20-s + 1.28·21-s + 4.94·22-s + 0.326·23-s − 16.3·24-s − 1.17·25-s + 3.84·27-s + 2.77·28-s − 0.370·29-s + 1.16·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(6.99510\times 10^{8}\)
Root analytic conductor: \(12.7526\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 13^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{2} T )^{4} \)
3$C_1$ \( ( 1 - p^{2} T )^{4} \)
13 \( 1 \)
good5$C_2 \wr S_4$ \( 1 + 2 p T + 3768 T^{2} + 31638 p T^{3} + 5066206 T^{4} + 31638 p^{6} T^{5} + 3768 p^{10} T^{6} + 2 p^{16} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 72 T + 3048 p T^{2} + 1714968 T^{3} + 421858 p T^{4} + 1714968 p^{5} T^{5} + 3048 p^{11} T^{6} - 72 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 702 T + 189920 T^{2} + 23522886 T^{3} + 981747438 T^{4} + 23522886 p^{5} T^{5} + 189920 p^{10} T^{6} + 702 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 300 T + 2941828 T^{2} - 476607084 T^{3} + 4545659652662 T^{4} - 476607084 p^{5} T^{5} + 2941828 p^{10} T^{6} + 300 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 1800 T + 8693176 T^{2} + 11549729736 T^{3} + 31625470615614 T^{4} + 11549729736 p^{5} T^{5} + 8693176 p^{10} T^{6} + 1800 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 36 p T + 8639740 T^{2} - 9720433068 T^{3} + 46339777877414 T^{4} - 9720433068 p^{5} T^{5} + 8639740 p^{10} T^{6} - 36 p^{16} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 1680 T + 32449996 T^{2} - 49793188176 T^{3} + 502464438697334 T^{4} - 49793188176 p^{5} T^{5} + 32449996 p^{10} T^{6} + 1680 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 972 T + 2704800 p T^{2} - 59470341276 T^{3} + 3285700801652158 T^{4} - 59470341276 p^{5} T^{5} + 2704800 p^{11} T^{6} - 972 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 9204 T + 124300404 T^{2} + 367554372876 T^{3} + 5437853734643350 T^{4} + 367554372876 p^{5} T^{5} + 124300404 p^{10} T^{6} + 9204 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 20054 T + 483437280 T^{2} + 5954483868378 T^{3} + 84054188114421214 T^{4} + 5954483868378 p^{5} T^{5} + 483437280 p^{10} T^{6} + 20054 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 8472 T + 284885756 T^{2} + 197544431256 T^{3} + 35169794355921654 T^{4} + 197544431256 p^{5} T^{5} + 284885756 p^{10} T^{6} + 8472 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 8034 T + 813796760 T^{2} - 5290199309394 T^{3} + 270262682314107342 T^{4} - 5290199309394 p^{5} T^{5} + 813796760 p^{10} T^{6} - 8034 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 4788 T + 935872484 T^{2} + 3845841379524 T^{3} + 417195039983922150 T^{4} + 3845841379524 p^{5} T^{5} + 935872484 p^{10} T^{6} - 4788 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 96658 T + 5911674696 T^{2} + 239666737031466 T^{3} + 7470807320251142398 T^{4} + 239666737031466 p^{5} T^{5} + 5911674696 p^{10} T^{6} + 96658 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 29172 T + 1853070548 T^{2} - 59125295225436 T^{3} + 1708830126746175654 T^{4} - 59125295225436 p^{5} T^{5} + 1853070548 p^{10} T^{6} - 29172 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 22452 T + 4604515152 T^{2} + 68490103352532 T^{3} + 8659085527255259470 T^{4} + 68490103352532 p^{5} T^{5} + 4604515152 p^{10} T^{6} + 22452 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 30030 T + 1483450304 T^{2} + 111557306795022 T^{3} + 5681166758658956094 T^{4} + 111557306795022 p^{5} T^{5} + 1483450304 p^{10} T^{6} + 30030 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 105132 T + 9046406580 T^{2} - 550713581324772 T^{3} + 29468870431490512774 T^{4} - 550713581324772 p^{5} T^{5} + 9046406580 p^{10} T^{6} - 105132 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 77984 T + 9532662332 T^{2} - 674457139477536 T^{3} + 40849239898501956422 T^{4} - 674457139477536 p^{5} T^{5} + 9532662332 p^{10} T^{6} - 77984 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 181390 T + 18122664600 T^{2} + 1128999655119270 T^{3} + 67290400913208837502 T^{4} + 1128999655119270 p^{5} T^{5} + 18122664600 p^{10} T^{6} + 181390 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 1386 T + 19577450048 T^{2} + 18679624850502 T^{3} + \)\(15\!\cdots\!22\)\( T^{4} + 18679624850502 p^{5} T^{5} + 19577450048 p^{10} T^{6} + 1386 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 55188 T + 28788151156 T^{2} - 1092628857365244 T^{3} + \)\(34\!\cdots\!18\)\( T^{4} - 1092628857365244 p^{5} T^{5} + 28788151156 p^{10} T^{6} - 55188 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.01982815831611664691806968825, −6.70110207018216240271415620656, −6.62837609236342696240221603702, −6.51237774160445811461937223306, −6.24616103369258400552917472450, −5.61622082238186339072361447375, −5.41915466698045667885171901801, −5.39138488887852323446008333386, −5.21838782177971034549362119139, −4.64932721735460627480540102291, −4.23878223259631412011731074527, −4.23650800267325481814670921827, −4.09487451303950070922145042732, −3.34987058284453604282919508175, −3.30533860331851204489583500388, −3.17219520799014621535070860544, −2.92683359229492228311625790671, −2.50329909425587432885147891721, −2.43245175975754330629095654547, −2.01853622169821508302198803661, −1.94264716493173793831215768386, −1.65075525490493700771680717130, −1.50179747254530330414627633670, −1.04155325190839226517356372313, −0.959816309727227798558001720171, 0, 0, 0, 0, 0.959816309727227798558001720171, 1.04155325190839226517356372313, 1.50179747254530330414627633670, 1.65075525490493700771680717130, 1.94264716493173793831215768386, 2.01853622169821508302198803661, 2.43245175975754330629095654547, 2.50329909425587432885147891721, 2.92683359229492228311625790671, 3.17219520799014621535070860544, 3.30533860331851204489583500388, 3.34987058284453604282919508175, 4.09487451303950070922145042732, 4.23650800267325481814670921827, 4.23878223259631412011731074527, 4.64932721735460627480540102291, 5.21838782177971034549362119139, 5.39138488887852323446008333386, 5.41915466698045667885171901801, 5.61622082238186339072361447375, 6.24616103369258400552917472450, 6.51237774160445811461937223306, 6.62837609236342696240221603702, 6.70110207018216240271415620656, 7.01982815831611664691806968825

Graph of the $Z$-function along the critical line