Properties

Label 8-1008e4-1.1-c0e4-0-2
Degree $8$
Conductor $1.032\times 10^{12}$
Sign $1$
Analytic cond. $0.0640428$
Root an. cond. $0.709265$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s + 2·13-s − 2·17-s + 6·25-s + 2·29-s + 2·37-s − 2·41-s − 4·45-s + 49-s + 2·53-s − 8·65-s − 2·73-s + 8·85-s − 2·89-s + 2·97-s + 4·101-s + 2·109-s + 2·113-s + 2·117-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + ⋯
L(s)  = 1  − 4·5-s + 9-s + 2·13-s − 2·17-s + 6·25-s + 2·29-s + 2·37-s − 2·41-s − 4·45-s + 49-s + 2·53-s − 8·65-s − 2·73-s + 8·85-s − 2·89-s + 2·97-s + 4·101-s + 2·109-s + 2·113-s + 2·117-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.0640428\)
Root analytic conductor: \(0.709265\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4016461478\)
\(L(\frac12)\) \(\approx\) \(0.4016461478\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
good5$C_2$ \( ( 1 + T + T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36669278897958561540550653899, −7.29562196791550169204664183095, −6.98124885064642614002063132719, −6.74337051319561540021444648016, −6.70940938097809815351325426679, −6.17432296555585313667241817814, −6.03184782441006453297710064859, −5.94405003289741859636861953826, −5.68302501438110682787747212629, −5.06557388815782573449609739789, −4.86188107277528562920809441933, −4.54750616976340650115264709035, −4.35816064857474253969256452712, −4.35521183471516629242609588060, −4.02858587833784317557035126449, −4.01892293615591860649017238021, −3.45722881146812250629576536470, −3.45445309405558840351209183118, −3.25443275792910673354172227913, −2.89623552428398970464238200300, −2.28449149183528066827763165953, −2.09468939711511061014624055451, −1.64476090390049158851296281161, −0.924602959498739877767318876373, −0.68565665448265552785458784317, 0.68565665448265552785458784317, 0.924602959498739877767318876373, 1.64476090390049158851296281161, 2.09468939711511061014624055451, 2.28449149183528066827763165953, 2.89623552428398970464238200300, 3.25443275792910673354172227913, 3.45445309405558840351209183118, 3.45722881146812250629576536470, 4.01892293615591860649017238021, 4.02858587833784317557035126449, 4.35521183471516629242609588060, 4.35816064857474253969256452712, 4.54750616976340650115264709035, 4.86188107277528562920809441933, 5.06557388815782573449609739789, 5.68302501438110682787747212629, 5.94405003289741859636861953826, 6.03184782441006453297710064859, 6.17432296555585313667241817814, 6.70940938097809815351325426679, 6.74337051319561540021444648016, 6.98124885064642614002063132719, 7.29562196791550169204664183095, 7.36669278897958561540550653899

Graph of the $Z$-function along the critical line