L(s) = 1 | − 3-s − 2·5-s + 3·7-s − 9-s − 3·11-s − 8·13-s + 2·15-s + 9·17-s − 3·19-s − 3·21-s − 4·23-s − 2·25-s + 5·27-s − 11·29-s + 5·31-s + 3·33-s − 6·35-s − 4·37-s + 8·39-s + 11·41-s − 4·43-s + 2·45-s + 2·47-s + 6·49-s − 9·51-s − 9·53-s + 6·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s + 1.13·7-s − 1/3·9-s − 0.904·11-s − 2.21·13-s + 0.516·15-s + 2.18·17-s − 0.688·19-s − 0.654·21-s − 0.834·23-s − 2/5·25-s + 0.962·27-s − 2.04·29-s + 0.898·31-s + 0.522·33-s − 1.01·35-s − 0.657·37-s + 1.28·39-s + 1.71·41-s − 0.609·43-s + 0.298·45-s + 0.291·47-s + 6/7·49-s − 1.26·51-s − 1.23·53-s + 0.809·55-s + ⋯ |
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅73⋅193
|
Sign: |
−1
|
Analytic conductor: |
313997. |
Root analytic conductor: |
8.24431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 218⋅73⋅193, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)3 |
| 19 | C1 | (1+T)3 |
good | 3 | S4×C2 | 1+T+2T2−2T3+2pT4+p2T5+p3T6 |
| 5 | S4×C2 | 1+2T+6T2+6T3+6pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1+3T+26T2+46T3+26pT4+3p2T5+p3T6 |
| 13 | S4×C2 | 1+8T+50T2+192T3+50pT4+8p2T5+p3T6 |
| 17 | S4×C2 | 1−9T+4pT2−292T3+4p2T4−9p2T5+p3T6 |
| 23 | S4×C2 | 1+4T+64T2+180T3+64pT4+4p2T5+p3T6 |
| 29 | S4×C2 | 1+11T+102T2+636T3+102pT4+11p2T5+p3T6 |
| 31 | S4×C2 | 1−5T+76T2−314T3+76pT4−5p2T5+p3T6 |
| 37 | S4×C2 | 1+4T+92T2+246T3+92pT4+4p2T5+p3T6 |
| 41 | S4×C2 | 1−11T+110T2−622T3+110pT4−11p2T5+p3T6 |
| 43 | S4×C2 | 1+4T+37T2+376T3+37pT4+4p2T5+p3T6 |
| 47 | S4×C2 | 1−2T+66T2−372T3+66pT4−2p2T5+p3T6 |
| 53 | S4×C2 | 1+9T+120T2+632T3+120pT4+9p2T5+p3T6 |
| 59 | S4×C2 | 1+12T+132T2+1308T3+132pT4+12p2T5+p3T6 |
| 61 | S4×C2 | 1−2T+26T2−42T3+26pT4−2p2T5+p3T6 |
| 67 | S4×C2 | 1+9T+218T2+1192T3+218pT4+9p2T5+p3T6 |
| 71 | S4×C2 | 1+158T2+58T3+158pT4+p3T6 |
| 73 | S4×C2 | 1+21T+302T2+2764T3+302pT4+21p2T5+p3T6 |
| 79 | S4×C2 | 1+6T+89T2−68T3+89pT4+6p2T5+p3T6 |
| 83 | S4×C2 | 1+7T+204T2+1062T3+204pT4+7p2T5+p3T6 |
| 89 | S4×C2 | 1+18T+335T2+3268T3+335pT4+18p2T5+p3T6 |
| 97 | S4×C2 | 1−28T+330T2−2896T3+330pT4−28p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.34594761472028925664505815636, −7.32917433019601515780686071811, −6.98078304800888180086114323289, −6.32418828383105012292227726519, −6.06779315280294485683854622066, −6.05538046487009661587593475438, −6.00993816660285712310885482119, −5.45756285905518483488033473057, −5.30695977336905398355720072510, −5.14930638794445310424244747070, −4.97566284443671376326894139984, −4.54055392196831253313043191472, −4.52515640708979219378776444005, −4.12151404807576453470217569242, −4.10542585046753475281499223433, −3.63034305755035502871364709165, −3.15051257926425695128695552894, −3.10860984009089974773313640115, −2.96887781167001649968305514430, −2.36084623796459330576927140568, −2.28957320100449844668261461846, −1.96008575953867797219314147658, −1.55043815102810441727570080043, −1.23428361569132925743125456303, −0.882175080876133348166542961091, 0, 0, 0,
0.882175080876133348166542961091, 1.23428361569132925743125456303, 1.55043815102810441727570080043, 1.96008575953867797219314147658, 2.28957320100449844668261461846, 2.36084623796459330576927140568, 2.96887781167001649968305514430, 3.10860984009089974773313640115, 3.15051257926425695128695552894, 3.63034305755035502871364709165, 4.10542585046753475281499223433, 4.12151404807576453470217569242, 4.52515640708979219378776444005, 4.54055392196831253313043191472, 4.97566284443671376326894139984, 5.14930638794445310424244747070, 5.30695977336905398355720072510, 5.45756285905518483488033473057, 6.00993816660285712310885482119, 6.05538046487009661587593475438, 6.06779315280294485683854622066, 6.32418828383105012292227726519, 6.98078304800888180086114323289, 7.32917433019601515780686071811, 7.34594761472028925664505815636