L(s) = 1 | − 3·3-s + 2·5-s − 3·7-s + 9-s − 7·11-s + 2·13-s − 6·15-s + 7·17-s − 3·19-s + 9·21-s + 14·23-s − 6·25-s + 7·27-s + 3·29-s − 11·31-s + 21·33-s − 6·35-s − 6·39-s − 7·41-s + 4·43-s + 2·45-s + 8·47-s + 6·49-s − 21·51-s + 53-s − 14·55-s + 9·57-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 0.894·5-s − 1.13·7-s + 1/3·9-s − 2.11·11-s + 0.554·13-s − 1.54·15-s + 1.69·17-s − 0.688·19-s + 1.96·21-s + 2.91·23-s − 6/5·25-s + 1.34·27-s + 0.557·29-s − 1.97·31-s + 3.65·33-s − 1.01·35-s − 0.960·39-s − 1.09·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 6/7·49-s − 2.94·51-s + 0.137·53-s − 1.88·55-s + 1.19·57-s + ⋯ |
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅73⋅193
|
Sign: |
−1
|
Analytic conductor: |
313997. |
Root analytic conductor: |
8.24431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 218⋅73⋅193, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1+T)3 |
| 19 | C1 | (1+T)3 |
good | 3 | S4×C2 | 1+pT+8T2+14T3+8pT4+p3T5+p3T6 |
| 5 | S4×C2 | 1−2T+2pT2−18T3+2p2T4−2p2T5+p3T6 |
| 11 | S4×C2 | 1+7T+4pT2+158T3+4p2T4+7p2T5+p3T6 |
| 13 | S4×C2 | 1−2T+34T2−50T3+34pT4−2p2T5+p3T6 |
| 17 | S4×C2 | 1−7T+40T2−132T3+40pT4−7p2T5+p3T6 |
| 23 | S4×C2 | 1−14T+122T2−700T3+122pT4−14p2T5+p3T6 |
| 29 | S4×C2 | 1−3T+14T2+104T3+14pT4−3p2T5+p3T6 |
| 31 | S4×C2 | 1+11T+118T2+698T3+118pT4+11p2T5+p3T6 |
| 37 | S4×C2 | 1+68T2−106T3+68pT4+p3T6 |
| 41 | S4×C2 | 1+7T−28T2−424T3−28pT4+7p2T5+p3T6 |
| 43 | S4×C2 | 1−4T+109T2−328T3+109pT4−4p2T5+p3T6 |
| 47 | S4×C2 | 1−8T+112T2−768T3+112pT4−8p2T5+p3T6 |
| 53 | S4×C2 | 1−T+128T2−104T3+128pT4−p2T5+p3T6 |
| 59 | S4×C2 | 1−10T+178T2−1056T3+178pT4−10p2T5+p3T6 |
| 61 | S4×C2 | 1−6T+134T2−650T3+134pT4−6p2T5+p3T6 |
| 67 | S4×C2 | 1−3T+122T2−214T3+122pT4−3p2T5+p3T6 |
| 71 | S4×C2 | 1+152T2−32T3+152pT4+p3T6 |
| 73 | S4×C2 | 1−T+118T2−244T3+118pT4−p2T5+p3T6 |
| 79 | S4×C2 | 1+4T+193T2+664T3+193pT4+4p2T5+p3T6 |
| 83 | S4×C2 | 1+31T+538T2+5934T3+538pT4+31p2T5+p3T6 |
| 89 | S4×C2 | 1+28T+371T2+3632T3+371pT4+28p2T5+p3T6 |
| 97 | S4×C2 | 1+30T+534T2+6302T3+534pT4+30p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.04784960504765531724880436671, −6.94213463281379938370616646878, −6.74015556110371023771053295938, −6.64351077901225897167722689450, −6.00618233763961226824705477669, −5.92812597983482153953793207022, −5.76791300880834702054866508529, −5.55690467379824512708195171073, −5.55564935763584390836687770564, −5.22371767619098008728360456176, −5.14100914060403736165816493811, −4.94436152225991249063541907881, −4.46571306500220432770236896418, −3.96348447361102782335170800345, −3.87729262164020350839383637659, −3.84074380917077995482881589127, −3.11297827182873428832739330777, −3.05691732576515462258334008097, −2.75063440134278432635368865278, −2.60550629150678625556847380484, −2.41380858491889938727993007836, −1.84872416717301476528816980793, −1.31803266948190901420974015913, −1.24742382205146565032243506579, −0.863009802359048103698523724741, 0, 0, 0,
0.863009802359048103698523724741, 1.24742382205146565032243506579, 1.31803266948190901420974015913, 1.84872416717301476528816980793, 2.41380858491889938727993007836, 2.60550629150678625556847380484, 2.75063440134278432635368865278, 3.05691732576515462258334008097, 3.11297827182873428832739330777, 3.84074380917077995482881589127, 3.87729262164020350839383637659, 3.96348447361102782335170800345, 4.46571306500220432770236896418, 4.94436152225991249063541907881, 5.14100914060403736165816493811, 5.22371767619098008728360456176, 5.55564935763584390836687770564, 5.55690467379824512708195171073, 5.76791300880834702054866508529, 5.92812597983482153953793207022, 6.00618233763961226824705477669, 6.64351077901225897167722689450, 6.74015556110371023771053295938, 6.94213463281379938370616646878, 7.04784960504765531724880436671