Properties

Label 6-825e3-1.1-c5e3-0-2
Degree $6$
Conductor $561515625$
Sign $-1$
Analytic cond. $2.31655\times 10^{6}$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·2-s + 27·3-s + 13·4-s − 189·6-s − 92·7-s + 21·8-s + 486·9-s + 363·11-s + 351·12-s + 90·13-s + 644·14-s − 787·16-s − 1.93e3·17-s − 3.40e3·18-s + 2.08e3·19-s − 2.48e3·21-s − 2.54e3·22-s − 1.22e3·23-s + 567·24-s − 630·26-s + 7.29e3·27-s − 1.19e3·28-s + 4.40e3·29-s − 1.06e4·31-s + 3.82e3·32-s + 9.80e3·33-s + 1.35e4·34-s + ⋯
L(s)  = 1  − 1.23·2-s + 1.73·3-s + 0.406·4-s − 2.14·6-s − 0.709·7-s + 0.116·8-s + 2·9-s + 0.904·11-s + 0.703·12-s + 0.147·13-s + 0.878·14-s − 0.768·16-s − 1.62·17-s − 2.47·18-s + 1.32·19-s − 1.22·21-s − 1.11·22-s − 0.480·23-s + 0.200·24-s − 0.182·26-s + 1.92·27-s − 0.288·28-s + 0.971·29-s − 1.99·31-s + 0.661·32-s + 1.56·33-s + 2.00·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(2.31655\times 10^{6}\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 11^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{2} T )^{3} \)
5 \( 1 \)
11$C_1$ \( ( 1 - p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 + 7 T + 9 p^{2} T^{2} + 35 p^{2} T^{3} + 9 p^{7} T^{4} + 7 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 + 92 T + 28489 T^{2} + 1066120 T^{3} + 28489 p^{5} T^{4} + 92 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 - 90 T + 138199 T^{2} - 277505972 T^{3} + 138199 p^{5} T^{4} - 90 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 1934 T + 5070371 T^{2} + 5368097468 T^{3} + 5070371 p^{5} T^{4} + 1934 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 2084 T + 8452353 T^{2} - 10305943192 T^{3} + 8452353 p^{5} T^{4} - 2084 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 1220 T + 13380661 T^{2} + 13300348792 T^{3} + 13380661 p^{5} T^{4} + 1220 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 4402 T + 39672443 T^{2} - 99874588732 T^{3} + 39672443 p^{5} T^{4} - 4402 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 10688 T + 96146301 T^{2} + 612569968000 T^{3} + 96146301 p^{5} T^{4} + 10688 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 8190 T + 170949451 T^{2} - 970713759316 T^{3} + 170949451 p^{5} T^{4} - 8190 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 5974 T + 299475567 T^{2} - 1256639577796 T^{3} + 299475567 p^{5} T^{4} - 5974 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 18868 T + 130667157 T^{2} - 125017085992 T^{3} + 130667157 p^{5} T^{4} + 18868 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 55500 T + 1674509341 T^{2} + 31033835957928 T^{3} + 1674509341 p^{5} T^{4} + 55500 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 9206 T + 983431051 T^{2} + 8550502005892 T^{3} + 983431051 p^{5} T^{4} + 9206 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 59196 T + 3288274801 T^{2} + 91826674965992 T^{3} + 3288274801 p^{5} T^{4} + 59196 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 79902 T + 4181653075 T^{2} - 137963205899380 T^{3} + 4181653075 p^{5} T^{4} - 79902 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 4468 T + 2713884569 T^{2} + 18497379943480 T^{3} + 2713884569 p^{5} T^{4} + 4468 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 75164 T + 5685876085 T^{2} + 240054320850568 T^{3} + 5685876085 p^{5} T^{4} + 75164 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 - 61290 T + 3793555675 T^{2} - 101810291156612 T^{3} + 3793555675 p^{5} T^{4} - 61290 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 83564 T + 5767840805 T^{2} + 230557669308584 T^{3} + 5767840805 p^{5} T^{4} + 83564 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 74764 T + 9023557773 T^{2} + 388285988035672 T^{3} + 9023557773 p^{5} T^{4} + 74764 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 - 37342 T + 9594205287 T^{2} - 76517859977828 T^{3} + 9594205287 p^{5} T^{4} - 37342 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 + 33486 T + 20157600991 T^{2} + 669005112374372 T^{3} + 20157600991 p^{5} T^{4} + 33486 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.986541959199194503411448627472, −8.393849698452879439263566599265, −8.257557615955186727819841351117, −8.222394043964952025674930667858, −7.71462614717627246216984354202, −7.60956329981179964046102051645, −6.88137841462313994356338786357, −6.80779292942777087522225672970, −6.80463195098424723954485193043, −6.46361202872644410232414110433, −5.98221147143337037534428017675, −5.46264400393612852537636634635, −5.27038623333678402876945574708, −4.58368040971661992009574468326, −4.40510189953053436500242680194, −4.33380236300215699309266846280, −3.57519839619762562748477908850, −3.49526518326860436033217448643, −3.03292379373707671758531996410, −2.98388976551263377331587014389, −2.25761977350130678574884441741, −2.07548966447855367410615912931, −1.59691629141447005332979634869, −1.31390387204305766809285125176, −1.04356352964306176142140735041, 0, 0, 0, 1.04356352964306176142140735041, 1.31390387204305766809285125176, 1.59691629141447005332979634869, 2.07548966447855367410615912931, 2.25761977350130678574884441741, 2.98388976551263377331587014389, 3.03292379373707671758531996410, 3.49526518326860436033217448643, 3.57519839619762562748477908850, 4.33380236300215699309266846280, 4.40510189953053436500242680194, 4.58368040971661992009574468326, 5.27038623333678402876945574708, 5.46264400393612852537636634635, 5.98221147143337037534428017675, 6.46361202872644410232414110433, 6.80463195098424723954485193043, 6.80779292942777087522225672970, 6.88137841462313994356338786357, 7.60956329981179964046102051645, 7.71462614717627246216984354202, 8.222394043964952025674930667858, 8.257557615955186727819841351117, 8.393849698452879439263566599265, 8.986541959199194503411448627472

Graph of the $Z$-function along the critical line