Properties

Label 6-825e3-1.1-c5e3-0-0
Degree $6$
Conductor $561515625$
Sign $1$
Analytic cond. $2.31655\times 10^{6}$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 27·3-s − 32·4-s − 54·6-s + 232·7-s − 96·8-s + 486·9-s + 363·11-s + 864·12-s − 450·13-s + 464·14-s − 112·16-s + 334·17-s + 972·18-s − 4.03e3·19-s − 6.26e3·21-s + 726·22-s + 7.06e3·23-s + 2.59e3·24-s − 900·26-s − 7.29e3·27-s − 7.42e3·28-s + 4.04e3·29-s − 608·31-s + 1.69e3·32-s − 9.80e3·33-s + 668·34-s + ⋯
L(s)  = 1  + 0.353·2-s − 1.73·3-s − 4-s − 0.612·6-s + 1.78·7-s − 0.530·8-s + 2·9-s + 0.904·11-s + 1.73·12-s − 0.738·13-s + 0.632·14-s − 0.109·16-s + 0.280·17-s + 0.707·18-s − 2.56·19-s − 3.09·21-s + 0.319·22-s + 2.78·23-s + 0.918·24-s − 0.261·26-s − 1.92·27-s − 1.78·28-s + 0.892·29-s − 0.113·31-s + 0.292·32-s − 1.56·33-s + 0.0991·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(2.31655\times 10^{6}\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 11^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(2.564736814\)
\(L(\frac12)\) \(\approx\) \(2.564736814\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{2} T )^{3} \)
5 \( 1 \)
11$C_1$ \( ( 1 - p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 - p T + 9 p^{2} T^{2} - 5 p^{3} T^{3} + 9 p^{7} T^{4} - p^{11} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 - 232 T + 48289 T^{2} - 7415840 T^{3} + 48289 p^{5} T^{4} - 232 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 450 T + 1068439 T^{2} + 311504212 T^{3} + 1068439 p^{5} T^{4} + 450 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 334 T + 3997931 T^{2} - 890682028 T^{3} + 3997931 p^{5} T^{4} - 334 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 4036 T + 10546833 T^{2} + 18356119928 T^{3} + 10546833 p^{5} T^{4} + 4036 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 7060 T + 25138261 T^{2} - 66605461592 T^{3} + 25138261 p^{5} T^{4} - 7060 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 4042 T + 41491883 T^{2} - 99862913932 T^{3} + 41491883 p^{5} T^{4} - 4042 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 608 T - 4957539 T^{2} - 176765401280 T^{3} - 4957539 p^{5} T^{4} + 608 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 2250 T + 76046251 T^{2} + 743927675036 T^{3} + 76046251 p^{5} T^{4} + 2250 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 10654 T + 367707807 T^{2} - 2476467488116 T^{3} + 367707807 p^{5} T^{4} - 10654 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 35528 T + 861670557 T^{2} - 12105543975808 T^{3} + 861670557 p^{5} T^{4} - 35528 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 - 2100 T + 593888701 T^{2} - 1015411414488 T^{3} + 593888701 p^{5} T^{4} - 2100 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 242 p T + 419938891 T^{2} - 13415490019292 T^{3} + 419938891 p^{5} T^{4} - 242 p^{11} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 81876 T + 3647590801 T^{2} + 113436530018552 T^{3} + 3647590801 p^{5} T^{4} + 81876 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 62298 T + 3103700755 T^{2} + 92329281973340 T^{3} + 3103700755 p^{5} T^{4} + 62298 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 46148 T + 3289111289 T^{2} - 83962738468760 T^{3} + 3289111289 p^{5} T^{4} - 46148 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 64724 T + 6737647765 T^{2} + 242132017763608 T^{3} + 6737647765 p^{5} T^{4} + 64724 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 810 T + 973289755 T^{2} + 147790502790292 T^{3} + 973289755 p^{5} T^{4} + 810 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 43876 T - 340410235 T^{2} + 81866739123944 T^{3} - 340410235 p^{5} T^{4} - 43876 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 101024 T + 13571488893 T^{2} - 801669575220272 T^{3} + 13571488893 p^{5} T^{4} - 101024 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 - 60022 T + 6543211047 T^{2} - 916436193435188 T^{3} + 6543211047 p^{5} T^{4} - 60022 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 319746 T + 51760850431 T^{2} - 5671445258599612 T^{3} + 51760850431 p^{5} T^{4} - 319746 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.580990740455532707459821914283, −7.936484749471752512268444197925, −7.68762971409453792461550593834, −7.45922811635295521071980971882, −7.23384315806196064997757086848, −6.77051400578451731921509263028, −6.46829463597262933770636335296, −6.19631191422080101713873885554, −5.85849079643668944199245432112, −5.85234625320562815312527535114, −4.97774192926619066629652996187, −4.97463700206461328474313945580, −4.83229650989614724147261327144, −4.49775773130483768514682363301, −4.24401158238361302757498252062, −4.23026222599976917878515372944, −3.33680405051253071304348989548, −3.23473432158802239518757511560, −2.49164630023142279570935660853, −2.13069831831111957379794882914, −1.77005943330697534560452696664, −1.34969873187599283937220738493, −0.77309700318192769304041189439, −0.76750934555467800063821478776, −0.30446372268100720435017360940, 0.30446372268100720435017360940, 0.76750934555467800063821478776, 0.77309700318192769304041189439, 1.34969873187599283937220738493, 1.77005943330697534560452696664, 2.13069831831111957379794882914, 2.49164630023142279570935660853, 3.23473432158802239518757511560, 3.33680405051253071304348989548, 4.23026222599976917878515372944, 4.24401158238361302757498252062, 4.49775773130483768514682363301, 4.83229650989614724147261327144, 4.97463700206461328474313945580, 4.97774192926619066629652996187, 5.85234625320562815312527535114, 5.85849079643668944199245432112, 6.19631191422080101713873885554, 6.46829463597262933770636335296, 6.77051400578451731921509263028, 7.23384315806196064997757086848, 7.45922811635295521071980971882, 7.68762971409453792461550593834, 7.936484749471752512268444197925, 8.580990740455532707459821914283

Graph of the $Z$-function along the critical line