Properties

Label 6-7440e3-1.1-c1e3-0-5
Degree $6$
Conductor $411830784000$
Sign $-1$
Analytic cond. $209676.$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s − 2·7-s + 6·9-s − 2·11-s − 6·13-s + 9·15-s + 4·17-s + 8·19-s + 6·21-s − 14·23-s + 6·25-s − 10·27-s + 16·29-s + 3·31-s + 6·33-s + 6·35-s − 8·37-s + 18·39-s + 4·41-s + 2·43-s − 18·45-s − 14·47-s − 5·49-s − 12·51-s + 8·53-s + 6·55-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s − 0.755·7-s + 2·9-s − 0.603·11-s − 1.66·13-s + 2.32·15-s + 0.970·17-s + 1.83·19-s + 1.30·21-s − 2.91·23-s + 6/5·25-s − 1.92·27-s + 2.97·29-s + 0.538·31-s + 1.04·33-s + 1.01·35-s − 1.31·37-s + 2.88·39-s + 0.624·41-s + 0.304·43-s − 2.68·45-s − 2.04·47-s − 5/7·49-s − 1.68·51-s + 1.09·53-s + 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 31^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 31^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 31^{3}\)
Sign: $-1$
Analytic conductor: \(209676.\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 31^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{3} \)
5$C_1$ \( ( 1 + T )^{3} \)
31$C_1$ \( ( 1 - T )^{3} \)
good7$S_4\times C_2$ \( 1 + 2 T + 9 T^{2} + 38 T^{3} + 9 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 + 2 T + 21 T^{2} + 36 T^{3} + 21 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 6 T + 47 T^{2} + 154 T^{3} + 47 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 4 T + 47 T^{2} - 116 T^{3} + 47 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 8 T + 3 p T^{2} - 272 T^{3} + 3 p^{2} T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 14 T + 129 T^{2} + 720 T^{3} + 129 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 16 T + 149 T^{2} - 938 T^{3} + 149 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 8 T + 3 p T^{2} + 14 p T^{3} + 3 p^{2} T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 4 T + 35 T^{2} - 344 T^{3} + 35 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 2 T + 69 T^{2} + 28 T^{3} + 69 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 14 T + 49 T^{2} - 72 T^{3} + 49 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 8 T + 87 T^{2} - 948 T^{3} + 87 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 26 T + 379 T^{2} - 3534 T^{3} + 379 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 18 T + 227 T^{2} + 1900 T^{3} + 227 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 65 T^{2} + 274 T^{3} + 65 p T^{4} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 4 T + 215 T^{2} + 566 T^{3} + 215 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 12 T + 155 T^{2} + 1618 T^{3} + 155 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 4 T + 93 T^{2} + 1132 T^{3} + 93 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 10 T + 205 T^{2} - 1272 T^{3} + 205 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 6 T + 249 T^{2} + 1018 T^{3} + 249 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 8 T + 51 T^{2} + 160 T^{3} + 51 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.33199746114560002404550694809, −7.02634354885657046724200185133, −6.81231560843725653787277020085, −6.75055937615609028870648443397, −6.25481871945585765187968458295, −6.20632792002260153690078783121, −6.03415055900949346547384566390, −5.54969747706520368649703898337, −5.42936145249297449834853540772, −5.26600149863978028534976888103, −4.87144279939083675148566421451, −4.84284934859947163901201135902, −4.56054640293132730132078593012, −4.23301872034711395075252557585, −3.99485206406728884356889805760, −3.84363679225316951164460429935, −3.26484678714390469878733802316, −3.18046875394932111684541247204, −3.07959408390127984422828810773, −2.56392287784121378460895300877, −2.15763720323436407413451511825, −2.12807715079537252657870700410, −1.20135660405723317324864591530, −1.18954553184534686353777954147, −0.888185723246622037030507730206, 0, 0, 0, 0.888185723246622037030507730206, 1.18954553184534686353777954147, 1.20135660405723317324864591530, 2.12807715079537252657870700410, 2.15763720323436407413451511825, 2.56392287784121378460895300877, 3.07959408390127984422828810773, 3.18046875394932111684541247204, 3.26484678714390469878733802316, 3.84363679225316951164460429935, 3.99485206406728884356889805760, 4.23301872034711395075252557585, 4.56054640293132730132078593012, 4.84284934859947163901201135902, 4.87144279939083675148566421451, 5.26600149863978028534976888103, 5.42936145249297449834853540772, 5.54969747706520368649703898337, 6.03415055900949346547384566390, 6.20632792002260153690078783121, 6.25481871945585765187968458295, 6.75055937615609028870648443397, 6.81231560843725653787277020085, 7.02634354885657046724200185133, 7.33199746114560002404550694809

Graph of the $Z$-function along the critical line