Properties

Label 6-63e6-1.1-c1e3-0-1
Degree $6$
Conductor $62523502209$
Sign $1$
Analytic cond. $31832.7$
Root an. cond. $5.62962$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 3·8-s + 6·11-s − 3·13-s − 3·17-s − 6·23-s + 3·29-s − 6·31-s + 15·37-s + 9·40-s + 12·41-s + 12·43-s + 12·53-s − 18·55-s + 18·59-s + 3·61-s + 64-s + 9·65-s + 6·67-s − 9·73-s + 6·79-s − 12·83-s + 9·85-s − 18·88-s − 15·89-s − 12·97-s + 30·101-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.06·8-s + 1.80·11-s − 0.832·13-s − 0.727·17-s − 1.25·23-s + 0.557·29-s − 1.07·31-s + 2.46·37-s + 1.42·40-s + 1.87·41-s + 1.82·43-s + 1.64·53-s − 2.42·55-s + 2.34·59-s + 0.384·61-s + 1/8·64-s + 1.11·65-s + 0.733·67-s − 1.05·73-s + 0.675·79-s − 1.31·83-s + 0.976·85-s − 1.91·88-s − 1.58·89-s − 1.21·97-s + 2.98·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{12} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(31832.7\)
Root analytic conductor: \(5.62962\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{12} \cdot 7^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.300671870\)
\(L(\frac12)\) \(\approx\) \(2.300671870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$D_{6}$ \( 1 + 3 T^{3} + p^{3} T^{6} \)
5$S_4\times C_2$ \( 1 + 3 T + 9 T^{2} + 18 T^{3} + 9 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 6 T + 36 T^{2} - 126 T^{3} + 36 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 3 T + 3 T^{2} - 34 T^{3} + 3 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 3 T + 27 T^{2} + 114 T^{3} + 27 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 9 T^{2} + 56 T^{3} + 9 p T^{4} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 6 T + 45 T^{2} + 180 T^{3} + 45 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 3 T + 51 T^{2} - 210 T^{3} + 51 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{3} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{3} \)
41$S_4\times C_2$ \( 1 - 12 T + 3 p T^{2} - 912 T^{3} + 3 p^{2} T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 12 T + 84 T^{2} - 380 T^{3} + 84 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 117 T^{2} + 24 T^{3} + 117 p T^{4} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 12 T + 180 T^{2} - 1266 T^{3} + 180 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 18 T + 189 T^{2} - 1572 T^{3} + 189 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 3 T + 105 T^{2} - 178 T^{3} + 105 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 6 T + 132 T^{2} - 542 T^{3} + 132 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 132 T^{2} - 108 T^{3} + 132 p T^{4} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 9 T + 207 T^{2} + 1298 T^{3} + 207 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 6 T + 168 T^{2} - 686 T^{3} + 168 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 12 T + 3 p T^{2} + 1920 T^{3} + 3 p^{2} T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 15 T + 315 T^{2} + 2622 T^{3} + 315 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 12 T + 3 p T^{2} + 2144 T^{3} + 3 p^{2} T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63791989372428470898650732794, −7.20119612660951083291530085392, −6.83887476135519576889787086632, −6.81660538940869216590485653531, −6.79120366243504666352524856966, −6.06852965854962000716034617599, −5.97888654730344914591318884979, −5.78064480065519281009912952176, −5.64900883202222696796549854087, −5.41400233776457405776372850896, −4.69862633264689876250437642122, −4.48570810638000671095062912820, −4.28435093628036278204316464483, −4.14179415229719923192844129860, −4.05203560258153162797986392410, −3.57185673553874596429523635695, −3.37754718510814837474554083001, −3.01412449285328134068091185504, −2.51348762964771214451820889214, −2.46740812017681228401052255691, −2.00509032390237138761513550216, −1.77554554952848420857948929480, −0.849352283350967378862293237889, −0.819087146485478635884274530385, −0.41081771851745334484665875597, 0.41081771851745334484665875597, 0.819087146485478635884274530385, 0.849352283350967378862293237889, 1.77554554952848420857948929480, 2.00509032390237138761513550216, 2.46740812017681228401052255691, 2.51348762964771214451820889214, 3.01412449285328134068091185504, 3.37754718510814837474554083001, 3.57185673553874596429523635695, 4.05203560258153162797986392410, 4.14179415229719923192844129860, 4.28435093628036278204316464483, 4.48570810638000671095062912820, 4.69862633264689876250437642122, 5.41400233776457405776372850896, 5.64900883202222696796549854087, 5.78064480065519281009912952176, 5.97888654730344914591318884979, 6.06852965854962000716034617599, 6.79120366243504666352524856966, 6.81660538940869216590485653531, 6.83887476135519576889787086632, 7.20119612660951083291530085392, 7.63791989372428470898650732794

Graph of the $Z$-function along the critical line