Properties

Label 6-5520e3-1.1-c1e3-0-5
Degree $6$
Conductor $168196608000$
Sign $-1$
Analytic cond. $85634.4$
Root an. cond. $6.63908$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·5-s − 6·7-s + 6·9-s + 2·11-s + 4·13-s − 9·15-s − 2·17-s − 2·19-s + 18·21-s − 3·23-s + 6·25-s − 10·27-s − 6·29-s − 2·31-s − 6·33-s − 18·35-s − 12·39-s − 2·41-s − 20·43-s + 18·45-s + 6·47-s + 10·49-s + 6·51-s − 6·53-s + 6·55-s + 6·57-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.34·5-s − 2.26·7-s + 2·9-s + 0.603·11-s + 1.10·13-s − 2.32·15-s − 0.485·17-s − 0.458·19-s + 3.92·21-s − 0.625·23-s + 6/5·25-s − 1.92·27-s − 1.11·29-s − 0.359·31-s − 1.04·33-s − 3.04·35-s − 1.92·39-s − 0.312·41-s − 3.04·43-s + 2.68·45-s + 0.875·47-s + 10/7·49-s + 0.840·51-s − 0.824·53-s + 0.809·55-s + 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3}\)
Sign: $-1$
Analytic conductor: \(85634.4\)
Root analytic conductor: \(6.63908\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{3} \)
5$C_1$ \( ( 1 - T )^{3} \)
23$C_1$ \( ( 1 + T )^{3} \)
good7$S_4\times C_2$ \( 1 + 6 T + 26 T^{2} + 76 T^{3} + 26 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 2 T + 27 T^{2} - 36 T^{3} + 27 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - 4 T + 37 T^{2} - 100 T^{3} + 37 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 2 T + 48 T^{2} + 66 T^{3} + 48 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 2 T + 43 T^{2} + 44 T^{3} + 43 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 6 T + 60 T^{2} + 262 T^{3} + 60 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 + 2 T + 78 T^{2} + 92 T^{3} + 78 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 104 T^{2} - 2 T^{3} + 104 p T^{4} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 2 T - 8 T^{2} - 54 T^{3} - 8 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 20 T + 245 T^{2} + 1896 T^{3} + 245 p T^{4} + 20 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 6 T + 119 T^{2} - 580 T^{3} + 119 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 6 T + 132 T^{2} + 582 T^{3} + 132 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 12 T + 134 T^{2} - 1448 T^{3} + 134 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 4 T + 173 T^{2} + 492 T^{3} + 173 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 6 T + 74 T^{2} - 80 T^{3} + 74 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 8 T + 194 T^{2} - 988 T^{3} + 194 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 8 T + 81 T^{2} + 236 T^{3} + 81 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 4 T + 125 T^{2} - 696 T^{3} + 125 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 8 T + 246 T^{2} + 1236 T^{3} + 246 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 6 T + 107 T^{2} - 1084 T^{3} + 107 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 14 T + 131 T^{2} - 540 T^{3} + 131 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51753910948058578219960947674, −7.01820475239984164932649222759, −6.77567767566924620777290359381, −6.75904527177945357086711005543, −6.50217144066444844475024390964, −6.41620556190591914806967815977, −6.24594280271300422061256946029, −5.85627907693275720042973019102, −5.79559474047823067209460175795, −5.50293879356424681670806400867, −5.12705907743973796983922289746, −5.10690573756739483658473182178, −4.82064496890382895107639353085, −4.22921800295166084921294705549, −4.12953382454728826607417282560, −3.88283372747718658164252006795, −3.41516017393529501970121449245, −3.34695822995481466213377612155, −3.26296651663171467333649252905, −2.39218842680616095565867475805, −2.33061306114660668376013001734, −2.17079265004713863937461432270, −1.38706060858033946867150350593, −1.26363842568701699024378657709, −1.18854558734192236960784281190, 0, 0, 0, 1.18854558734192236960784281190, 1.26363842568701699024378657709, 1.38706060858033946867150350593, 2.17079265004713863937461432270, 2.33061306114660668376013001734, 2.39218842680616095565867475805, 3.26296651663171467333649252905, 3.34695822995481466213377612155, 3.41516017393529501970121449245, 3.88283372747718658164252006795, 4.12953382454728826607417282560, 4.22921800295166084921294705549, 4.82064496890382895107639353085, 5.10690573756739483658473182178, 5.12705907743973796983922289746, 5.50293879356424681670806400867, 5.79559474047823067209460175795, 5.85627907693275720042973019102, 6.24594280271300422061256946029, 6.41620556190591914806967815977, 6.50217144066444844475024390964, 6.75904527177945357086711005543, 6.77567767566924620777290359381, 7.01820475239984164932649222759, 7.51753910948058578219960947674

Graph of the $Z$-function along the critical line