Properties

Label 6-535e3-535.534-c0e3-0-1
Degree $6$
Conductor $153130375$
Sign $1$
Analytic cond. $0.0190341$
Root an. cond. $0.516720$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·5-s − 7-s + 3·9-s − 3·10-s − 11-s + 14-s − 17-s − 3·18-s − 19-s + 22-s + 6·25-s − 29-s + 34-s − 3·35-s + 38-s − 41-s − 43-s + 9·45-s − 6·50-s − 3·55-s + 58-s − 61-s − 3·63-s − 67-s + 3·70-s − 73-s + ⋯
L(s)  = 1  − 2-s + 3·5-s − 7-s + 3·9-s − 3·10-s − 11-s + 14-s − 17-s − 3·18-s − 19-s + 22-s + 6·25-s − 29-s + 34-s − 3·35-s + 38-s − 41-s − 43-s + 9·45-s − 6·50-s − 3·55-s + 58-s − 61-s − 3·63-s − 67-s + 3·70-s − 73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{3} \cdot 107^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{3} \cdot 107^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(5^{3} \cdot 107^{3}\)
Sign: $1$
Analytic conductor: \(0.0190341\)
Root analytic conductor: \(0.516720\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{535} (534, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 5^{3} \cdot 107^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5984734811\)
\(L(\frac12)\) \(\approx\) \(0.5984734811\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 - T )^{3} \)
107$C_1$ \( ( 1 - T )^{3} \)
good2$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
7$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
11$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
17$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
19$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
29$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
43$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
67$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
79$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
97$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.906757694873072278689834095812, −9.527908122818056024124474424087, −9.463432795152910438958705270780, −9.241541822244537908891325200430, −8.795700638787193756020428334410, −8.540715632245741624162724795827, −8.388477665810043337945709438901, −7.67342018277742728715926375460, −7.34010203515956043348388656078, −7.00750874914935526178488014842, −6.87618428171147153180490134446, −6.51379586928985269625267836273, −6.31872134854547838858742969326, −5.83168506435481595520508771463, −5.65647829169602576387120462530, −5.17162941320833479001921604540, −4.71807635874933895606621314285, −4.48007720362656186316787000439, −4.26673127917785263132289690137, −3.28931895286286894011030684280, −3.23337952857169682004924550635, −2.26155132285538243848687768947, −2.25262003142672894754897117258, −1.60012331089677639396685172043, −1.39943739559820658234890411090, 1.39943739559820658234890411090, 1.60012331089677639396685172043, 2.25262003142672894754897117258, 2.26155132285538243848687768947, 3.23337952857169682004924550635, 3.28931895286286894011030684280, 4.26673127917785263132289690137, 4.48007720362656186316787000439, 4.71807635874933895606621314285, 5.17162941320833479001921604540, 5.65647829169602576387120462530, 5.83168506435481595520508771463, 6.31872134854547838858742969326, 6.51379586928985269625267836273, 6.87618428171147153180490134446, 7.00750874914935526178488014842, 7.34010203515956043348388656078, 7.67342018277742728715926375460, 8.388477665810043337945709438901, 8.540715632245741624162724795827, 8.795700638787193756020428334410, 9.241541822244537908891325200430, 9.463432795152910438958705270780, 9.527908122818056024124474424087, 9.906757694873072278689834095812

Graph of the $Z$-function along the critical line