Properties

Label 6-507e3-1.1-c5e3-0-0
Degree $6$
Conductor $130323843$
Sign $-1$
Analytic cond. $537657.$
Root an. cond. $9.01746$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 41·4-s − 54·5-s − 84·7-s − 78·8-s + 486·9-s − 876·11-s + 1.10e3·12-s + 1.45e3·15-s + 369·16-s + 102·17-s + 16·19-s + 2.21e3·20-s + 2.26e3·21-s + 2.10e3·24-s − 3.91e3·25-s − 7.29e3·27-s + 3.44e3·28-s + 9.66e3·29-s + 1.01e4·31-s + 6.39e3·32-s + 2.36e4·33-s + 4.53e3·35-s − 1.99e4·36-s − 1.18e4·37-s + 4.21e3·40-s − 3.54e4·41-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.28·4-s − 0.965·5-s − 0.647·7-s − 0.430·8-s + 2·9-s − 2.18·11-s + 2.21·12-s + 1.67·15-s + 0.360·16-s + 0.0856·17-s + 0.0101·19-s + 1.23·20-s + 1.12·21-s + 0.746·24-s − 1.25·25-s − 1.92·27-s + 0.830·28-s + 2.13·29-s + 1.90·31-s + 1.10·32-s + 3.78·33-s + 0.625·35-s − 2.56·36-s − 1.41·37-s + 0.416·40-s − 3.29·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 13^{6}\)
Sign: $-1$
Analytic conductor: \(537657.\)
Root analytic conductor: \(9.01746\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{3} \cdot 13^{6} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{2} T )^{3} \)
13 \( 1 \)
good2$S_4\times C_2$ \( 1 + 41 T^{2} + 39 p T^{3} + 41 p^{5} T^{4} + p^{15} T^{6} \)
5$S_4\times C_2$ \( 1 + 54 T + 6827 T^{2} + 319908 T^{3} + 6827 p^{5} T^{4} + 54 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 + 12 p T + 1299 p T^{2} - 1180456 T^{3} + 1299 p^{6} T^{4} + 12 p^{11} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 + 876 T + 61507 p T^{2} + 2436552 p^{2} T^{3} + 61507 p^{6} T^{4} + 876 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 6 p T - 8065 T^{2} + 1596294636 T^{3} - 8065 p^{5} T^{4} - 6 p^{11} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 16 T + 3413289 T^{2} - 760972640 T^{3} + 3413289 p^{5} T^{4} - 16 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 2842341 T^{2} - 25559359488 T^{3} + 2842341 p^{5} T^{4} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 9666 T + 67970099 T^{2} - 305609767116 T^{3} + 67970099 p^{5} T^{4} - 9666 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 - 10196 T + 72148205 T^{2} - 329715654296 T^{3} + 72148205 p^{5} T^{4} - 10196 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 11818 T + 212374475 T^{2} + 1632313776796 T^{3} + 212374475 p^{5} T^{4} + 11818 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 35490 T + 761247303 T^{2} + 9805740782844 T^{3} + 761247303 p^{5} T^{4} + 35490 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 2780 T + 372887649 T^{2} - 858673638568 T^{3} + 372887649 p^{5} T^{4} - 2780 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 25728 T + 906478125 T^{2} + 12412105377792 T^{3} + 906478125 p^{5} T^{4} + 25728 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 36786 T + 360217563 T^{2} + 2682437852724 T^{3} + 360217563 p^{5} T^{4} - 36786 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 - 27516 T + 1543859889 T^{2} - 22695451892328 T^{3} + 1543859889 p^{5} T^{4} - 27516 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 754 p T + 2632594739 T^{2} - 76087228896508 T^{3} + 2632594739 p^{5} T^{4} - 754 p^{11} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 42536 T + 3378302777 T^{2} - 103907028844016 T^{3} + 3378302777 p^{5} T^{4} - 42536 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 54432 T + 5248808853 T^{2} - 171838859617728 T^{3} + 5248808853 p^{5} T^{4} - 54432 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 27846 T + 4499033031 T^{2} + 131217557166452 T^{3} + 4499033031 p^{5} T^{4} + 27846 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 80568 T + 8027152749 T^{2} + 375224404431760 T^{3} + 8027152749 p^{5} T^{4} + 80568 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 24012 T + 1064674457 T^{2} - 98965398905976 T^{3} + 1064674457 p^{5} T^{4} + 24012 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 117450 T + 20453502647 T^{2} + 1326790009424556 T^{3} + 20453502647 p^{5} T^{4} + 117450 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 20930 T + 21142486607 T^{2} - 452696635744412 T^{3} + 21142486607 p^{5} T^{4} - 20930 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.727517758462917667407428222386, −9.051624208407520357953975460641, −8.545950978298710707491903058883, −8.506545749751185555920354568776, −8.216631830531636222364617277489, −7.897394344510744647912281082739, −7.74864323564366689893364404143, −6.98124036265538509312096721507, −6.85428029456005751237725332643, −6.55597495139275390504259707704, −6.47390659165588661016878308884, −5.63105154888773928701405048487, −5.61723223346557341902559896765, −5.22100312598415471728255886982, −4.92887073993923890532466413742, −4.79761456008147890588258217300, −4.33079712488471088858606279817, −3.88839779986710002210337569915, −3.70797859062833101548757482593, −3.13970246990655331742314727477, −2.73484631587005005932755830047, −2.36812099431186171503562080722, −1.68255720451211607363661299279, −1.00292347106516479442386273000, −0.68937116950273865376627673613, 0, 0, 0, 0.68937116950273865376627673613, 1.00292347106516479442386273000, 1.68255720451211607363661299279, 2.36812099431186171503562080722, 2.73484631587005005932755830047, 3.13970246990655331742314727477, 3.70797859062833101548757482593, 3.88839779986710002210337569915, 4.33079712488471088858606279817, 4.79761456008147890588258217300, 4.92887073993923890532466413742, 5.22100312598415471728255886982, 5.61723223346557341902559896765, 5.63105154888773928701405048487, 6.47390659165588661016878308884, 6.55597495139275390504259707704, 6.85428029456005751237725332643, 6.98124036265538509312096721507, 7.74864323564366689893364404143, 7.897394344510744647912281082739, 8.216631830531636222364617277489, 8.506545749751185555920354568776, 8.545950978298710707491903058883, 9.051624208407520357953975460641, 9.727517758462917667407428222386

Graph of the $Z$-function along the critical line