Properties

Label 6-467e3-467.466-c0e3-0-0
Degree $6$
Conductor $101847563$
Sign $1$
Analytic cond. $0.0126596$
Root an. cond. $0.482766$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·4-s − 7-s − 3·12-s − 13-s + 6·16-s − 17-s + 21-s − 23-s + 3·25-s − 3·28-s + 39-s − 41-s − 43-s − 47-s − 6·48-s + 51-s − 3·52-s − 53-s − 59-s + 10·64-s − 3·68-s + 69-s − 71-s − 3·75-s − 83-s + 3·84-s + ⋯
L(s)  = 1  − 3-s + 3·4-s − 7-s − 3·12-s − 13-s + 6·16-s − 17-s + 21-s − 23-s + 3·25-s − 3·28-s + 39-s − 41-s − 43-s − 47-s − 6·48-s + 51-s − 3·52-s − 53-s − 59-s + 10·64-s − 3·68-s + 69-s − 71-s − 3·75-s − 83-s + 3·84-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(467^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(467^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(467^{3}\)
Sign: $1$
Analytic conductor: \(0.0126596\)
Root analytic conductor: \(0.482766\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{467} (466, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 467^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7571000367\)
\(L(\frac12)\) \(\approx\) \(0.7571000367\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad467$C_1$ \( ( 1 - T )^{3} \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
3$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
7$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
13$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
17$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
43$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
47$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
53$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
59$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
71$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
89$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
97$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23433303295823125467383245330, −9.893521161743215929482898759268, −9.723931792593346066749891930352, −9.354511904140891677412402739686, −8.718642439284746687323609908428, −8.497611884057402239401196582957, −8.166577805712224433018579760114, −7.73138904662540327436911629105, −7.48097308862250021217943065878, −6.98715100282491274824774559738, −6.77532632542757166291585652451, −6.63549176413813228357902532529, −6.60888335051796937011489608478, −5.95289743880671994896173238330, −5.78451008545206650485783450356, −5.54095459843366247772041767344, −4.83509476189974862396029463534, −4.81228629461629871289296641376, −4.07154303783045488231560221465, −3.33739813868354473654185232548, −3.04784260920514135463153142273, −2.95031351893988248038314420176, −2.37737780748307281671064762218, −1.84652980298499369410297571995, −1.38831536471378564959270231894, 1.38831536471378564959270231894, 1.84652980298499369410297571995, 2.37737780748307281671064762218, 2.95031351893988248038314420176, 3.04784260920514135463153142273, 3.33739813868354473654185232548, 4.07154303783045488231560221465, 4.81228629461629871289296641376, 4.83509476189974862396029463534, 5.54095459843366247772041767344, 5.78451008545206650485783450356, 5.95289743880671994896173238330, 6.60888335051796937011489608478, 6.63549176413813228357902532529, 6.77532632542757166291585652451, 6.98715100282491274824774559738, 7.48097308862250021217943065878, 7.73138904662540327436911629105, 8.166577805712224433018579760114, 8.497611884057402239401196582957, 8.718642439284746687323609908428, 9.354511904140891677412402739686, 9.723931792593346066749891930352, 9.893521161743215929482898759268, 10.23433303295823125467383245330

Graph of the $Z$-function along the critical line