Properties

Label 6-447e3-447.446-c0e3-0-1
Degree $6$
Conductor $89314623$
Sign $1$
Analytic cond. $0.0111018$
Root an. cond. $0.472315$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s − 3·6-s − 7-s + 6·9-s − 11-s + 14-s − 6·18-s − 19-s − 3·21-s + 22-s − 23-s + 3·25-s + 10·27-s − 31-s − 3·33-s − 37-s + 38-s − 41-s + 3·42-s + 46-s − 3·50-s − 10·54-s − 3·57-s − 59-s − 61-s + 62-s + ⋯
L(s)  = 1  − 2-s + 3·3-s − 3·6-s − 7-s + 6·9-s − 11-s + 14-s − 6·18-s − 19-s − 3·21-s + 22-s − 23-s + 3·25-s + 10·27-s − 31-s − 3·33-s − 37-s + 38-s − 41-s + 3·42-s + 46-s − 3·50-s − 10·54-s − 3·57-s − 59-s − 61-s + 62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 89314623 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89314623 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(89314623\)    =    \(3^{3} \cdot 149^{3}\)
Sign: $1$
Analytic conductor: \(0.0111018\)
Root analytic conductor: \(0.472315\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{447} (446, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 89314623,\ (\ :0, 0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7731812405\)
\(L(\frac12)\) \(\approx\) \(0.7731812405\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{3} \)
149$C_1$ \( ( 1 - T )^{3} \)
good2$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
7$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
11$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
19$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
23$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
37$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
41$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
61$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
67$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
71$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
73$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
89$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14866620493946758315578061031, −9.614244169881286737611016439084, −9.307110975782005013404183436806, −9.250220096751762148816611936882, −8.724622655345588025712028427955, −8.714850795603752631392194394422, −8.590467746275215297993492331941, −8.077015532215392242406297269297, −7.906018658857740387382729385851, −7.44746529242760733404610266845, −7.24297226166409964931876886576, −6.89583229976468280121918581623, −6.50757133247180643878474415880, −6.43635493766420963173751838123, −5.58398827218719397284982852382, −5.18981868377537442811086082520, −4.68282744444178734220977853276, −4.22631123461919212976758328393, −4.16629376621955412865319929053, −3.35872673140665124446696475988, −3.21094576969232543260813648216, −2.78319217042432333593650012333, −2.64789455287754599161843283869, −1.76457432776260659837964002510, −1.56232957238509874094185475666, 1.56232957238509874094185475666, 1.76457432776260659837964002510, 2.64789455287754599161843283869, 2.78319217042432333593650012333, 3.21094576969232543260813648216, 3.35872673140665124446696475988, 4.16629376621955412865319929053, 4.22631123461919212976758328393, 4.68282744444178734220977853276, 5.18981868377537442811086082520, 5.58398827218719397284982852382, 6.43635493766420963173751838123, 6.50757133247180643878474415880, 6.89583229976468280121918581623, 7.24297226166409964931876886576, 7.44746529242760733404610266845, 7.906018658857740387382729385851, 8.077015532215392242406297269297, 8.590467746275215297993492331941, 8.714850795603752631392194394422, 8.724622655345588025712028427955, 9.250220096751762148816611936882, 9.307110975782005013404183436806, 9.614244169881286737611016439084, 10.14866620493946758315578061031

Graph of the $Z$-function along the critical line