Properties

Label 6-3800e3-152.37-c0e3-0-3
Degree $6$
Conductor $54872000000$
Sign $1$
Analytic cond. $6.82059$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 6·4-s + 10·8-s + 15·16-s + 3·19-s − 27-s + 21·32-s − 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s + 18·76-s − 9·94-s − 6·108-s + 3·121-s + 127-s + 36·128-s + 131-s + 137-s + 139-s − 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯
L(s)  = 1  + 3·2-s + 6·4-s + 10·8-s + 15·16-s + 3·19-s − 27-s + 21·32-s − 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s + 18·76-s − 9·94-s − 6·108-s + 3·121-s + 127-s + 36·128-s + 131-s + 137-s + 139-s − 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 5^{6} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(6.82059\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3800} (1101, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{9} \cdot 5^{6} \cdot 19^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(17.31642653\)
\(L(\frac12)\) \(\approx\) \(17.31642653\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{3} \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{3} \)
good3$C_6$ \( 1 + T^{3} + T^{6} \)
7$C_6$ \( 1 + T^{3} + T^{6} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
13$C_6$ \( 1 + T^{3} + T^{6} \)
17$C_6$ \( 1 + T^{3} + T^{6} \)
23$C_6$ \( 1 + T^{3} + T^{6} \)
29$C_6$ \( 1 + T^{3} + T^{6} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_2$ \( ( 1 + T + T^{2} )^{3} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_2$ \( ( 1 + T + T^{2} )^{3} \)
53$C_6$ \( 1 + T^{3} + T^{6} \)
59$C_6$ \( 1 + T^{3} + T^{6} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 + T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_6$ \( 1 + T^{3} + T^{6} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60832019804577456202142826120, −7.17152920915400361154831934643, −7.02678264425828841444314941909, −6.96872483613053770117503391512, −6.77885521607385788888835106452, −6.20992304248875064512757145322, −6.06449188826151788193384752646, −5.88004712399777255206150725396, −5.66455582646833053538356700807, −5.30413696606658519391343074171, −4.99621449367105578287382345469, −4.95200572745320401436093592935, −4.87313184259353025648862862607, −4.47188360610106782843205787481, −3.96768468813104163989317715687, −3.66230199216777753740237343710, −3.60587576232893532899609522099, −3.27841165432932801604987387238, −3.16519910098316355134791707938, −2.83834727189313551016203009367, −2.41338293578327042636646666491, −1.95667818261153896396445420352, −1.83520021970847513060548334122, −1.24394717335128879486726389519, −1.22480060681873618762671818129, 1.22480060681873618762671818129, 1.24394717335128879486726389519, 1.83520021970847513060548334122, 1.95667818261153896396445420352, 2.41338293578327042636646666491, 2.83834727189313551016203009367, 3.16519910098316355134791707938, 3.27841165432932801604987387238, 3.60587576232893532899609522099, 3.66230199216777753740237343710, 3.96768468813104163989317715687, 4.47188360610106782843205787481, 4.87313184259353025648862862607, 4.95200572745320401436093592935, 4.99621449367105578287382345469, 5.30413696606658519391343074171, 5.66455582646833053538356700807, 5.88004712399777255206150725396, 6.06449188826151788193384752646, 6.20992304248875064512757145322, 6.77885521607385788888835106452, 6.96872483613053770117503391512, 7.02678264425828841444314941909, 7.17152920915400361154831934643, 7.60832019804577456202142826120

Graph of the $Z$-function along the critical line