Properties

Label 6-304e3-1.1-c3e3-0-0
Degree $6$
Conductor $28094464$
Sign $1$
Analytic cond. $5770.57$
Root an. cond. $4.23516$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s + 2·5-s + 35·7-s − 4·9-s + 28·11-s − 109·13-s + 10·15-s − 123·17-s − 57·19-s + 175·21-s + 193·23-s − 92·25-s + 133·27-s − 297·29-s + 140·31-s + 140·33-s + 70·35-s + 38·37-s − 545·39-s + 736·41-s + 514·43-s − 8·45-s − 134·47-s + 77·49-s − 615·51-s + 311·53-s + 56·55-s + ⋯
L(s)  = 1  + 0.962·3-s + 0.178·5-s + 1.88·7-s − 0.148·9-s + 0.767·11-s − 2.32·13-s + 0.172·15-s − 1.75·17-s − 0.688·19-s + 1.81·21-s + 1.74·23-s − 0.735·25-s + 0.947·27-s − 1.90·29-s + 0.811·31-s + 0.738·33-s + 0.338·35-s + 0.168·37-s − 2.23·39-s + 2.80·41-s + 1.82·43-s − 0.0265·45-s − 0.415·47-s + 0.224·49-s − 1.68·51-s + 0.806·53-s + 0.137·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28094464 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28094464 ^{s/2} \, \Gamma_{\C}(s+3/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(28094464\)    =    \(2^{12} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(5770.57\)
Root analytic conductor: \(4.23516\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 28094464,\ (\ :3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.465182700\)
\(L(\frac12)\) \(\approx\) \(4.465182700\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 + p T )^{3} \)
good3$S_4\times C_2$ \( 1 - 5 T + 29 T^{2} - 298 T^{3} + 29 p^{3} T^{4} - 5 p^{6} T^{5} + p^{9} T^{6} \)
5$S_4\times C_2$ \( 1 - 2 T + 96 T^{2} + 1016 T^{3} + 96 p^{3} T^{4} - 2 p^{6} T^{5} + p^{9} T^{6} \)
7$S_4\times C_2$ \( 1 - 5 p T + 164 p T^{2} - 23983 T^{3} + 164 p^{4} T^{4} - 5 p^{7} T^{5} + p^{9} T^{6} \)
11$S_4\times C_2$ \( 1 - 28 T + 4182 T^{2} - 74894 T^{3} + 4182 p^{3} T^{4} - 28 p^{6} T^{5} + p^{9} T^{6} \)
13$S_4\times C_2$ \( 1 + 109 T + 6999 T^{2} + 365490 T^{3} + 6999 p^{3} T^{4} + 109 p^{6} T^{5} + p^{9} T^{6} \)
17$S_4\times C_2$ \( 1 + 123 T + 17610 T^{2} + 1215235 T^{3} + 17610 p^{3} T^{4} + 123 p^{6} T^{5} + p^{9} T^{6} \)
23$S_4\times C_2$ \( 1 - 193 T + 39933 T^{2} - 4449614 T^{3} + 39933 p^{3} T^{4} - 193 p^{6} T^{5} + p^{9} T^{6} \)
29$S_4\times C_2$ \( 1 + 297 T + 71131 T^{2} + 13319430 T^{3} + 71131 p^{3} T^{4} + 297 p^{6} T^{5} + p^{9} T^{6} \)
31$S_4\times C_2$ \( 1 - 140 T + 62189 T^{2} - 4673384 T^{3} + 62189 p^{3} T^{4} - 140 p^{6} T^{5} + p^{9} T^{6} \)
37$S_4\times C_2$ \( 1 - 38 T + 100099 T^{2} - 7279012 T^{3} + 100099 p^{3} T^{4} - 38 p^{6} T^{5} + p^{9} T^{6} \)
41$S_4\times C_2$ \( 1 - 736 T + 354551 T^{2} - 108718336 T^{3} + 354551 p^{3} T^{4} - 736 p^{6} T^{5} + p^{9} T^{6} \)
43$S_4\times C_2$ \( 1 - 514 T + 224130 T^{2} - 56635248 T^{3} + 224130 p^{3} T^{4} - 514 p^{6} T^{5} + p^{9} T^{6} \)
47$S_4\times C_2$ \( 1 + 134 T + 8542 T^{2} - 31064212 T^{3} + 8542 p^{3} T^{4} + 134 p^{6} T^{5} + p^{9} T^{6} \)
53$S_4\times C_2$ \( 1 - 311 T + 285651 T^{2} - 106221286 T^{3} + 285651 p^{3} T^{4} - 311 p^{6} T^{5} + p^{9} T^{6} \)
59$S_4\times C_2$ \( 1 + 199 T + 35145 T^{2} - 35868602 T^{3} + 35145 p^{3} T^{4} + 199 p^{6} T^{5} + p^{9} T^{6} \)
61$S_4\times C_2$ \( 1 - 56 T + 192812 T^{2} + 95078710 T^{3} + 192812 p^{3} T^{4} - 56 p^{6} T^{5} + p^{9} T^{6} \)
67$S_4\times C_2$ \( 1 - 509 T + 553245 T^{2} - 128354670 T^{3} + 553245 p^{3} T^{4} - 509 p^{6} T^{5} + p^{9} T^{6} \)
71$S_4\times C_2$ \( 1 - 874 T + 862737 T^{2} - 513398212 T^{3} + 862737 p^{3} T^{4} - 874 p^{6} T^{5} + p^{9} T^{6} \)
73$S_4\times C_2$ \( 1 - 203 T + 1104798 T^{2} - 157466799 T^{3} + 1104798 p^{3} T^{4} - 203 p^{6} T^{5} + p^{9} T^{6} \)
79$S_4\times C_2$ \( 1 + 242 T + 502613 T^{2} + 37031420 T^{3} + 502613 p^{3} T^{4} + 242 p^{6} T^{5} + p^{9} T^{6} \)
83$S_4\times C_2$ \( 1 - 62 T + 1258913 T^{2} - 154550580 T^{3} + 1258913 p^{3} T^{4} - 62 p^{6} T^{5} + p^{9} T^{6} \)
89$S_4\times C_2$ \( 1 - 1764 T + 3042123 T^{2} - 2614453128 T^{3} + 3042123 p^{3} T^{4} - 1764 p^{6} T^{5} + p^{9} T^{6} \)
97$S_4\times C_2$ \( 1 + 2178 T + 3988819 T^{2} + 4075506692 T^{3} + 3988819 p^{3} T^{4} + 2178 p^{6} T^{5} + p^{9} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.846223777462568546314360223324, −9.480228984253261288386880547318, −9.388831197020595096584902351697, −9.176985651202488577271883588222, −8.654542548338446332885722090904, −8.541089446182544506429539718246, −8.182660064137815763193007904729, −7.54733890620872877843504723655, −7.53842227156571053093163280714, −7.45115180981913637410561665473, −6.68603890120793934962496917906, −6.44266419423815731733596920049, −6.18254354084535631253989721489, −5.31019784896800884092238391877, −5.06480889553315385568676961501, −5.04918589113692540660984785140, −4.30108937850090138001115544203, −4.21820289367402961464997567022, −3.79377537587383463836047517010, −2.82215607317539289441585266022, −2.49607769856702221341471882810, −2.41572612669935721630567134407, −1.83603365375001199738450358149, −1.17861291637460230647129740104, −0.45539880345220226819484374287, 0.45539880345220226819484374287, 1.17861291637460230647129740104, 1.83603365375001199738450358149, 2.41572612669935721630567134407, 2.49607769856702221341471882810, 2.82215607317539289441585266022, 3.79377537587383463836047517010, 4.21820289367402961464997567022, 4.30108937850090138001115544203, 5.04918589113692540660984785140, 5.06480889553315385568676961501, 5.31019784896800884092238391877, 6.18254354084535631253989721489, 6.44266419423815731733596920049, 6.68603890120793934962496917906, 7.45115180981913637410561665473, 7.53842227156571053093163280714, 7.54733890620872877843504723655, 8.182660064137815763193007904729, 8.541089446182544506429539718246, 8.654542548338446332885722090904, 9.176985651202488577271883588222, 9.388831197020595096584902351697, 9.480228984253261288386880547318, 9.846223777462568546314360223324

Graph of the $Z$-function along the critical line