Properties

Label 6-2e18-1.1-c23e3-0-1
Degree $6$
Conductor $262144$
Sign $1$
Analytic cond. $9.87342\times 10^{6}$
Root an. cond. $14.6468$
Motivic weight $23$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.13e5·3-s − 9.56e7·5-s − 8.64e9·7-s − 3.10e10·9-s − 3.54e10·11-s − 3.16e12·13-s − 2.04e13·15-s − 3.02e13·17-s + 3.82e14·19-s − 1.85e15·21-s − 3.75e15·23-s − 2.20e16·25-s + 1.79e16·27-s + 1.42e17·29-s − 2.04e17·31-s − 7.57e15·33-s + 8.26e17·35-s + 9.00e17·37-s − 6.77e17·39-s − 1.81e18·41-s − 9.02e18·43-s + 2.97e18·45-s + 2.64e18·47-s + 4.27e19·49-s − 6.46e18·51-s − 1.27e20·53-s + 3.38e18·55-s + ⋯
L(s)  = 1  + 0.697·3-s − 0.875·5-s − 1.65·7-s − 0.330·9-s − 0.0374·11-s − 0.489·13-s − 0.610·15-s − 0.213·17-s + 0.753·19-s − 1.15·21-s − 0.821·23-s − 1.84·25-s + 0.621·27-s + 2.17·29-s − 1.44·31-s − 0.0261·33-s + 1.44·35-s + 0.832·37-s − 0.341·39-s − 0.516·41-s − 1.48·43-s + 0.289·45-s + 0.156·47-s + 1.56·49-s − 0.149·51-s − 1.88·53-s + 0.0327·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262144 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262144 ^{s/2} \, \Gamma_{\C}(s+23/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(262144\)    =    \(2^{18}\)
Sign: $1$
Analytic conductor: \(9.87342\times 10^{6}\)
Root analytic conductor: \(14.6468\)
Motivic weight: \(23\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 262144,\ (\ :23/2, 23/2, 23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(1.941997852\)
\(L(\frac12)\) \(\approx\) \(1.941997852\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$S_4\times C_2$ \( 1 - 7924 p^{3} T + 948725057 p^{4} T^{2} - 2085160918904 p^{9} T^{3} + 948725057 p^{27} T^{4} - 7924 p^{49} T^{5} + p^{69} T^{6} \)
5$S_4\times C_2$ \( 1 + 95628618 T + 6231350534237367 p T^{2} + \)\(28\!\cdots\!44\)\( p^{4} T^{3} + 6231350534237367 p^{24} T^{4} + 95628618 p^{46} T^{5} + p^{69} T^{6} \)
7$S_4\times C_2$ \( 1 + 8647912920 T + 653348641610189109 p^{2} T^{2} + \)\(33\!\cdots\!88\)\( p^{4} T^{3} + 653348641610189109 p^{25} T^{4} + 8647912920 p^{46} T^{5} + p^{69} T^{6} \)
11$S_4\times C_2$ \( 1 + 3220082436 p T + \)\(37\!\cdots\!97\)\( p^{2} T^{2} - \)\(63\!\cdots\!04\)\( p^{3} T^{3} + \)\(37\!\cdots\!97\)\( p^{25} T^{4} + 3220082436 p^{47} T^{5} + p^{69} T^{6} \)
13$S_4\times C_2$ \( 1 + 3164858452338 T + \)\(98\!\cdots\!11\)\( T^{2} + \)\(21\!\cdots\!36\)\( p T^{3} + \)\(98\!\cdots\!11\)\( p^{23} T^{4} + 3164858452338 p^{46} T^{5} + p^{69} T^{6} \)
17$S_4\times C_2$ \( 1 + 30233487828906 T + \)\(33\!\cdots\!67\)\( p T^{2} + \)\(39\!\cdots\!04\)\( p^{2} T^{3} + \)\(33\!\cdots\!67\)\( p^{24} T^{4} + 30233487828906 p^{46} T^{5} + p^{69} T^{6} \)
19$S_4\times C_2$ \( 1 - 20144988652644 p T + \)\(18\!\cdots\!41\)\( p^{2} T^{2} - \)\(28\!\cdots\!68\)\( p^{3} T^{3} + \)\(18\!\cdots\!41\)\( p^{25} T^{4} - 20144988652644 p^{47} T^{5} + p^{69} T^{6} \)
23$S_4\times C_2$ \( 1 + 3754416434163720 T + \)\(55\!\cdots\!33\)\( T^{2} + \)\(12\!\cdots\!68\)\( T^{3} + \)\(55\!\cdots\!33\)\( p^{23} T^{4} + 3754416434163720 p^{46} T^{5} + p^{69} T^{6} \)
29$S_4\times C_2$ \( 1 - 142892073311612862 T + \)\(18\!\cdots\!03\)\( T^{2} - \)\(12\!\cdots\!68\)\( T^{3} + \)\(18\!\cdots\!03\)\( p^{23} T^{4} - 142892073311612862 p^{46} T^{5} + p^{69} T^{6} \)
31$S_4\times C_2$ \( 1 + 204189369040807008 T + \)\(22\!\cdots\!33\)\( T^{2} - \)\(36\!\cdots\!44\)\( T^{3} + \)\(22\!\cdots\!33\)\( p^{23} T^{4} + 204189369040807008 p^{46} T^{5} + p^{69} T^{6} \)
37$S_4\times C_2$ \( 1 - 900641094521542422 T + \)\(33\!\cdots\!55\)\( T^{2} - \)\(32\!\cdots\!44\)\( T^{3} + \)\(33\!\cdots\!55\)\( p^{23} T^{4} - 900641094521542422 p^{46} T^{5} + p^{69} T^{6} \)
41$S_4\times C_2$ \( 1 + 1818448729363485042 T + \)\(12\!\cdots\!83\)\( T^{2} + \)\(75\!\cdots\!48\)\( T^{3} + \)\(12\!\cdots\!83\)\( p^{23} T^{4} + 1818448729363485042 p^{46} T^{5} + p^{69} T^{6} \)
43$S_4\times C_2$ \( 1 + 9021528635440809420 T + \)\(90\!\cdots\!89\)\( T^{2} + \)\(42\!\cdots\!44\)\( T^{3} + \)\(90\!\cdots\!89\)\( p^{23} T^{4} + 9021528635440809420 p^{46} T^{5} + p^{69} T^{6} \)
47$S_4\times C_2$ \( 1 - 2644177465669087344 T + \)\(54\!\cdots\!81\)\( T^{2} - \)\(16\!\cdots\!16\)\( T^{3} + \)\(54\!\cdots\!81\)\( p^{23} T^{4} - 2644177465669087344 p^{46} T^{5} + p^{69} T^{6} \)
53$S_4\times C_2$ \( 1 + \)\(12\!\cdots\!54\)\( T + \)\(14\!\cdots\!03\)\( T^{2} + \)\(10\!\cdots\!48\)\( T^{3} + \)\(14\!\cdots\!03\)\( p^{23} T^{4} + \)\(12\!\cdots\!54\)\( p^{46} T^{5} + p^{69} T^{6} \)
59$S_4\times C_2$ \( 1 - \)\(74\!\cdots\!72\)\( T + \)\(34\!\cdots\!57\)\( T^{2} - \)\(94\!\cdots\!40\)\( T^{3} + \)\(34\!\cdots\!57\)\( p^{23} T^{4} - \)\(74\!\cdots\!72\)\( p^{46} T^{5} + p^{69} T^{6} \)
61$S_4\times C_2$ \( 1 - \)\(14\!\cdots\!62\)\( T + \)\(29\!\cdots\!43\)\( T^{2} - \)\(33\!\cdots\!44\)\( T^{3} + \)\(29\!\cdots\!43\)\( p^{23} T^{4} - \)\(14\!\cdots\!62\)\( p^{46} T^{5} + p^{69} T^{6} \)
67$S_4\times C_2$ \( 1 - \)\(34\!\cdots\!28\)\( T + \)\(68\!\cdots\!29\)\( T^{2} - \)\(83\!\cdots\!04\)\( T^{3} + \)\(68\!\cdots\!29\)\( p^{23} T^{4} - \)\(34\!\cdots\!28\)\( p^{46} T^{5} + p^{69} T^{6} \)
71$S_4\times C_2$ \( 1 + \)\(40\!\cdots\!04\)\( T + \)\(14\!\cdots\!57\)\( T^{2} + \)\(30\!\cdots\!28\)\( T^{3} + \)\(14\!\cdots\!57\)\( p^{23} T^{4} + \)\(40\!\cdots\!04\)\( p^{46} T^{5} + p^{69} T^{6} \)
73$S_4\times C_2$ \( 1 - \)\(47\!\cdots\!90\)\( T + \)\(26\!\cdots\!23\)\( T^{2} - \)\(70\!\cdots\!72\)\( T^{3} + \)\(26\!\cdots\!23\)\( p^{23} T^{4} - \)\(47\!\cdots\!90\)\( p^{46} T^{5} + p^{69} T^{6} \)
79$S_4\times C_2$ \( 1 - \)\(11\!\cdots\!28\)\( T + \)\(13\!\cdots\!73\)\( T^{2} - \)\(97\!\cdots\!24\)\( T^{3} + \)\(13\!\cdots\!73\)\( p^{23} T^{4} - \)\(11\!\cdots\!28\)\( p^{46} T^{5} + p^{69} T^{6} \)
83$S_4\times C_2$ \( 1 - \)\(52\!\cdots\!36\)\( T + \)\(25\!\cdots\!81\)\( T^{2} + \)\(43\!\cdots\!68\)\( T^{3} + \)\(25\!\cdots\!81\)\( p^{23} T^{4} - \)\(52\!\cdots\!36\)\( p^{46} T^{5} + p^{69} T^{6} \)
89$S_4\times C_2$ \( 1 + \)\(60\!\cdots\!26\)\( T + \)\(46\!\cdots\!91\)\( T^{2} - \)\(43\!\cdots\!28\)\( T^{3} + \)\(46\!\cdots\!91\)\( p^{23} T^{4} + \)\(60\!\cdots\!26\)\( p^{46} T^{5} + p^{69} T^{6} \)
97$S_4\times C_2$ \( 1 + \)\(23\!\cdots\!34\)\( T + \)\(32\!\cdots\!71\)\( T^{2} + \)\(27\!\cdots\!16\)\( T^{3} + \)\(32\!\cdots\!71\)\( p^{23} T^{4} + \)\(23\!\cdots\!34\)\( p^{46} T^{5} + p^{69} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.555244563187478972926096639592, −8.682170489790027708836866654553, −8.430729868112161759773346044194, −8.304776669425614081427103243146, −7.74641307228228650665987946548, −7.64615399841257042592719433357, −6.86080390629950268218270792987, −6.77031558602377535271361143644, −6.50607317972899037274050044324, −6.06131366239507472737350020221, −5.40605739429222239891178190278, −5.33141716298559346386056415297, −4.84263125186541410328879841937, −4.20149666684783479539504694564, −3.87599280350020312742372930552, −3.70671447456024022490661344025, −3.33813305257518831852878629032, −2.88773643609696315445957984546, −2.66679764071308757305696425234, −2.27672396622963242365230790164, −1.87169807787650087762672301738, −1.40592160734461248663000867969, −0.67104680460508170401809718222, −0.58054141752189685504849373118, −0.24298663109883912291533648127, 0.24298663109883912291533648127, 0.58054141752189685504849373118, 0.67104680460508170401809718222, 1.40592160734461248663000867969, 1.87169807787650087762672301738, 2.27672396622963242365230790164, 2.66679764071308757305696425234, 2.88773643609696315445957984546, 3.33813305257518831852878629032, 3.70671447456024022490661344025, 3.87599280350020312742372930552, 4.20149666684783479539504694564, 4.84263125186541410328879841937, 5.33141716298559346386056415297, 5.40605739429222239891178190278, 6.06131366239507472737350020221, 6.50607317972899037274050044324, 6.77031558602377535271361143644, 6.86080390629950268218270792987, 7.64615399841257042592719433357, 7.74641307228228650665987946548, 8.304776669425614081427103243146, 8.430729868112161759773346044194, 8.682170489790027708836866654553, 9.555244563187478972926096639592

Graph of the $Z$-function along the critical line