Dirichlet series
L(s) = 1 | − 9.67e4·3-s + 2.41e7·5-s + 2.95e8·7-s − 1.58e9·9-s + 4.03e10·11-s − 1.33e11·13-s − 2.33e12·15-s + 7.79e12·17-s − 3.57e13·19-s − 2.86e13·21-s + 1.93e14·23-s + 1.39e14·25-s − 9.67e14·27-s − 5.60e15·29-s + 1.12e16·31-s − 3.90e15·33-s + 7.13e15·35-s + 2.42e16·37-s + 1.29e16·39-s − 2.98e17·41-s + 3.33e16·43-s − 3.82e16·45-s − 1.20e17·47-s − 1.21e18·49-s − 7.54e17·51-s + 1.13e18·53-s + 9.72e17·55-s + ⋯ |
L(s) = 1 | − 0.946·3-s + 1.10·5-s + 0.396·7-s − 0.151·9-s + 0.468·11-s − 0.269·13-s − 1.04·15-s + 0.938·17-s − 1.33·19-s − 0.374·21-s + 0.975·23-s + 0.291·25-s − 0.904·27-s − 2.47·29-s + 2.46·31-s − 0.443·33-s + 0.437·35-s + 0.829·37-s + 0.254·39-s − 3.46·41-s + 0.235·43-s − 0.167·45-s − 0.335·47-s − 2.18·49-s − 0.887·51-s + 0.894·53-s + 0.517·55-s + ⋯ |
Functional equation
Invariants
Degree: | \(6\) |
Conductor: | \(262144\) = \(2^{18}\) |
Sign: | $-1$ |
Analytic conductor: | \(5.72242\times 10^{6}\) |
Root analytic conductor: | \(13.3740\) |
Motivic weight: | \(21\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(3\) |
Selberg data: | \((6,\ 262144,\ (\ :21/2, 21/2, 21/2),\ -1)\) |
Particular Values
\(L(11)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{23}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | \( 1 \) | |
good | 3 | $S_4\times C_2$ | \( 1 + 96764 T + 405548779 p^{3} T^{2} + 997170147832 p^{7} T^{3} + 405548779 p^{24} T^{4} + 96764 p^{42} T^{5} + p^{63} T^{6} \) |
5 | $S_4\times C_2$ | \( 1 - 24111774 T + 17686493631939 p^{2} T^{2} - 1220218992717725588 p^{4} T^{3} + 17686493631939 p^{23} T^{4} - 24111774 p^{42} T^{5} + p^{63} T^{6} \) | |
7 | $S_4\times C_2$ | \( 1 - 42284040 p T + 3809985402511443 p^{3} T^{2} - \)\(86\!\cdots\!48\)\( p^{3} T^{3} + 3809985402511443 p^{24} T^{4} - 42284040 p^{43} T^{5} + p^{63} T^{6} \) | |
11 | $S_4\times C_2$ | \( 1 - 40335108684 T + \)\(11\!\cdots\!17\)\( T^{2} - \)\(48\!\cdots\!64\)\( p T^{3} + \)\(11\!\cdots\!17\)\( p^{21} T^{4} - 40335108684 p^{42} T^{5} + p^{63} T^{6} \) | |
13 | $S_4\times C_2$ | \( 1 + 133734425946 T + \)\(48\!\cdots\!63\)\( p T^{2} + \)\(42\!\cdots\!76\)\( p^{2} T^{3} + \)\(48\!\cdots\!63\)\( p^{22} T^{4} + 133734425946 p^{42} T^{5} + p^{63} T^{6} \) | |
17 | $S_4\times C_2$ | \( 1 - 7797732274422 T + \)\(37\!\cdots\!71\)\( p^{4} T^{2} + \)\(85\!\cdots\!68\)\( p^{2} T^{3} + \)\(37\!\cdots\!71\)\( p^{25} T^{4} - 7797732274422 p^{42} T^{5} + p^{63} T^{6} \) | |
19 | $S_4\times C_2$ | \( 1 + 35788199781996 T + \)\(12\!\cdots\!39\)\( p T^{2} + \)\(14\!\cdots\!92\)\( p^{2} T^{3} + \)\(12\!\cdots\!39\)\( p^{22} T^{4} + 35788199781996 p^{42} T^{5} + p^{63} T^{6} \) | |
23 | $S_4\times C_2$ | \( 1 - 193770761479080 T + \)\(32\!\cdots\!17\)\( T^{2} - \)\(21\!\cdots\!56\)\( T^{3} + \)\(32\!\cdots\!17\)\( p^{21} T^{4} - 193770761479080 p^{42} T^{5} + p^{63} T^{6} \) | |
29 | $S_4\times C_2$ | \( 1 + 5607343422466122 T + \)\(24\!\cdots\!83\)\( T^{2} + \)\(62\!\cdots\!88\)\( T^{3} + \)\(24\!\cdots\!83\)\( p^{21} T^{4} + 5607343422466122 p^{42} T^{5} + p^{63} T^{6} \) | |
31 | $S_4\times C_2$ | \( 1 - 11246757871503072 T + \)\(97\!\cdots\!53\)\( T^{2} - \)\(49\!\cdots\!64\)\( T^{3} + \)\(97\!\cdots\!53\)\( p^{21} T^{4} - 11246757871503072 p^{42} T^{5} + p^{63} T^{6} \) | |
37 | $S_4\times C_2$ | \( 1 - 24272499791100606 T + \)\(17\!\cdots\!75\)\( T^{2} - \)\(26\!\cdots\!28\)\( T^{3} + \)\(17\!\cdots\!75\)\( p^{21} T^{4} - 24272499791100606 p^{42} T^{5} + p^{63} T^{6} \) | |
41 | $S_4\times C_2$ | \( 1 + 298159108991869602 T + \)\(47\!\cdots\!03\)\( T^{2} + \)\(50\!\cdots\!88\)\( T^{3} + \)\(47\!\cdots\!03\)\( p^{21} T^{4} + 298159108991869602 p^{42} T^{5} + p^{63} T^{6} \) | |
43 | $S_4\times C_2$ | \( 1 - 33333932139754860 T + \)\(30\!\cdots\!21\)\( T^{2} - \)\(22\!\cdots\!68\)\( T^{3} + \)\(30\!\cdots\!21\)\( p^{21} T^{4} - 33333932139754860 p^{42} T^{5} + p^{63} T^{6} \) | |
47 | $S_4\times C_2$ | \( 1 + 120874283547603888 T - \)\(88\!\cdots\!11\)\( T^{2} - \)\(47\!\cdots\!92\)\( T^{3} - \)\(88\!\cdots\!11\)\( p^{21} T^{4} + 120874283547603888 p^{42} T^{5} + p^{63} T^{6} \) | |
53 | $S_4\times C_2$ | \( 1 - 1138443393004854222 T + \)\(47\!\cdots\!87\)\( T^{2} - \)\(34\!\cdots\!56\)\( T^{3} + \)\(47\!\cdots\!87\)\( p^{21} T^{4} - 1138443393004854222 p^{42} T^{5} + p^{63} T^{6} \) | |
59 | $S_4\times C_2$ | \( 1 + 9225624498709937412 T + \)\(44\!\cdots\!77\)\( T^{2} + \)\(17\!\cdots\!60\)\( T^{3} + \)\(44\!\cdots\!77\)\( p^{21} T^{4} + 9225624498709937412 p^{42} T^{5} + p^{63} T^{6} \) | |
61 | $S_4\times C_2$ | \( 1 - 6554902294063924182 T + \)\(72\!\cdots\!43\)\( T^{2} - \)\(43\!\cdots\!64\)\( p T^{3} + \)\(72\!\cdots\!43\)\( p^{21} T^{4} - 6554902294063924182 p^{42} T^{5} + p^{63} T^{6} \) | |
67 | $S_4\times C_2$ | \( 1 - 15793054074531629124 T + \)\(60\!\cdots\!01\)\( T^{2} - \)\(66\!\cdots\!68\)\( T^{3} + \)\(60\!\cdots\!01\)\( p^{21} T^{4} - 15793054074531629124 p^{42} T^{5} + p^{63} T^{6} \) | |
71 | $S_4\times C_2$ | \( 1 + 41139582493467997704 T + \)\(13\!\cdots\!17\)\( T^{2} + \)\(27\!\cdots\!68\)\( T^{3} + \)\(13\!\cdots\!17\)\( p^{21} T^{4} + 41139582493467997704 p^{42} T^{5} + p^{63} T^{6} \) | |
73 | $S_4\times C_2$ | \( 1 + 19422167949903851970 T + \)\(37\!\cdots\!27\)\( T^{2} + \)\(49\!\cdots\!64\)\( T^{3} + \)\(37\!\cdots\!27\)\( p^{21} T^{4} + 19422167949903851970 p^{42} T^{5} + p^{63} T^{6} \) | |
79 | $S_4\times C_2$ | \( 1 + \)\(13\!\cdots\!88\)\( T + \)\(18\!\cdots\!73\)\( T^{2} + \)\(13\!\cdots\!04\)\( T^{3} + \)\(18\!\cdots\!73\)\( p^{21} T^{4} + \)\(13\!\cdots\!88\)\( p^{42} T^{5} + p^{63} T^{6} \) | |
83 | $S_4\times C_2$ | \( 1 + 64013993832679681068 T + \)\(30\!\cdots\!69\)\( T^{2} + \)\(30\!\cdots\!64\)\( T^{3} + \)\(30\!\cdots\!69\)\( p^{21} T^{4} + 64013993832679681068 p^{42} T^{5} + p^{63} T^{6} \) | |
89 | $S_4\times C_2$ | \( 1 - \)\(42\!\cdots\!66\)\( T + \)\(21\!\cdots\!31\)\( T^{2} - \)\(50\!\cdots\!72\)\( T^{3} + \)\(21\!\cdots\!31\)\( p^{21} T^{4} - \)\(42\!\cdots\!66\)\( p^{42} T^{5} + p^{63} T^{6} \) | |
97 | $S_4\times C_2$ | \( 1 + \)\(32\!\cdots\!42\)\( T + \)\(10\!\cdots\!79\)\( T^{2} + \)\(44\!\cdots\!92\)\( T^{3} + \)\(10\!\cdots\!79\)\( p^{21} T^{4} + \)\(32\!\cdots\!42\)\( p^{42} T^{5} + p^{63} T^{6} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−9.935661255351499078763403132465, −9.877977017385689420763109486266, −9.305479693471246718432703533184, −9.065678908902046208157008648789, −8.598441213516952344950134694744, −8.058714880046087243371645720675, −7.980997797126987588131496561625, −7.41903832460381214361052560317, −6.81038595505596514860853833274, −6.69844944375280238351717905575, −6.20849980095369978079826556720, −5.83941054492409710534094921380, −5.72029824359501605349046418483, −5.22107455885014232211484942750, −4.74318822737567322889923558287, −4.73795853420168985118704752497, −4.04398490857215563468764920868, −3.49201541015573995410367213458, −3.34837635375097432769918347489, −2.71534430857626152171552177089, −2.33302093963803665215451202782, −1.84332057187802241320169932616, −1.65132137580432212082337088618, −1.21503661364053314498195670718, −0.954235612069330949578786267748, 0, 0, 0, 0.954235612069330949578786267748, 1.21503661364053314498195670718, 1.65132137580432212082337088618, 1.84332057187802241320169932616, 2.33302093963803665215451202782, 2.71534430857626152171552177089, 3.34837635375097432769918347489, 3.49201541015573995410367213458, 4.04398490857215563468764920868, 4.73795853420168985118704752497, 4.74318822737567322889923558287, 5.22107455885014232211484942750, 5.72029824359501605349046418483, 5.83941054492409710534094921380, 6.20849980095369978079826556720, 6.69844944375280238351717905575, 6.81038595505596514860853833274, 7.41903832460381214361052560317, 7.980997797126987588131496561625, 8.058714880046087243371645720675, 8.598441213516952344950134694744, 9.065678908902046208157008648789, 9.305479693471246718432703533184, 9.877977017385689420763109486266, 9.935661255351499078763403132465