Properties

Label 6-2175e3-87.86-c0e3-0-2
Degree $6$
Conductor $10289109375$
Sign $1$
Analytic cond. $1.27893$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s − 3·29-s + 3·41-s − 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s − 3·29-s + 3·41-s − 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 29^{3}\)
Sign: $1$
Analytic conductor: \(1.27893\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2175} (1826, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 29^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.273807836\)
\(L(\frac12)\) \(\approx\) \(4.273807836\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{3} \)
5 \( 1 \)
29$C_1$ \( ( 1 + T )^{3} \)
good2$C_6$ \( 1 + T^{3} + T^{6} \)
7$C_6$ \( 1 - T^{3} + T^{6} \)
11$C_6$ \( 1 - T^{3} + T^{6} \)
13$C_6$ \( 1 - T^{3} + T^{6} \)
17$C_6$ \( 1 + T^{3} + T^{6} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_2$ \( ( 1 - T + T^{2} )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_6$ \( 1 + T^{3} + T^{6} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 - T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 - T^{3} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.283628838011331338515175036407, −7.86323795441089878409619645631, −7.86218075976287764752333334966, −7.44643075740033179845349751065, −7.31224669850524849697821884818, −7.30625998703915144637154656499, −6.82883412006812277965661625110, −6.43713359714796277460327852542, −6.17209459992901541821773673578, −5.88609013077102886402845440676, −5.71246823902183627437253769463, −5.07190150257792623463188221684, −4.93368819348352006813103738464, −4.52470512231292599012275165847, −4.23692971573057199033517471435, −3.80980449569617653538362104569, −3.72530078415204495070506315368, −3.51742713403905625313206686108, −3.17069456319245308203767496122, −2.67132526055191886201146298813, −2.55739365404473325363480450571, −2.23321786640478887660271663919, −1.94074726955905458397913084652, −1.42222125349456273924850061714, −1.02541387754140829046272838321, 1.02541387754140829046272838321, 1.42222125349456273924850061714, 1.94074726955905458397913084652, 2.23321786640478887660271663919, 2.55739365404473325363480450571, 2.67132526055191886201146298813, 3.17069456319245308203767496122, 3.51742713403905625313206686108, 3.72530078415204495070506315368, 3.80980449569617653538362104569, 4.23692971573057199033517471435, 4.52470512231292599012275165847, 4.93368819348352006813103738464, 5.07190150257792623463188221684, 5.71246823902183627437253769463, 5.88609013077102886402845440676, 6.17209459992901541821773673578, 6.43713359714796277460327852542, 6.82883412006812277965661625110, 7.30625998703915144637154656499, 7.31224669850524849697821884818, 7.44643075740033179845349751065, 7.86218075976287764752333334966, 7.86323795441089878409619645631, 8.283628838011331338515175036407

Graph of the $Z$-function along the critical line