Properties

Label 6-2175e3-87.86-c0e3-0-0
Degree $6$
Conductor $10289109375$
Sign $1$
Analytic cond. $1.27893$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s − 3·29-s + 3·41-s + 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s − 3·29-s + 3·41-s + 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 29^{3}\)
Sign: $1$
Analytic conductor: \(1.27893\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2175} (1826, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 29^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3916897324\)
\(L(\frac12)\) \(\approx\) \(0.3916897324\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{3} \)
5 \( 1 \)
29$C_1$ \( ( 1 + T )^{3} \)
good2$C_6$ \( 1 - T^{3} + T^{6} \)
7$C_6$ \( 1 + T^{3} + T^{6} \)
11$C_6$ \( 1 - T^{3} + T^{6} \)
13$C_6$ \( 1 + T^{3} + T^{6} \)
17$C_6$ \( 1 - T^{3} + T^{6} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_2$ \( ( 1 - T + T^{2} )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_6$ \( 1 - T^{3} + T^{6} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 + T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 - T^{3} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.898304037184150965892262877441, −7.78568402852589979850302836332, −7.58483552922305159556451678421, −7.43982266164931105211698921052, −7.06299408771861551595904807137, −6.92166442159257411947785103629, −6.68578315958118128747274737475, −6.25909602560367724146302844124, −6.00700754698867846014773369746, −5.72934784548585606706766407868, −5.67830604541890026810108894041, −5.44725657725167988838580996213, −4.99712873200408410429398761002, −4.80202232634207885304732900559, −4.43708997874958087758069894207, −4.35847235339394158100138240385, −3.92581744283433777952756655802, −3.66809801714371974600384617121, −3.52757895222731274896147097187, −2.51610797159669187321861614201, −2.41317590431588517460914701473, −1.73070337497445164535221643354, −1.51489068005775694053626102262, −1.16696546040772382780751521796, −0.49730740771534572588371024792, 0.49730740771534572588371024792, 1.16696546040772382780751521796, 1.51489068005775694053626102262, 1.73070337497445164535221643354, 2.41317590431588517460914701473, 2.51610797159669187321861614201, 3.52757895222731274896147097187, 3.66809801714371974600384617121, 3.92581744283433777952756655802, 4.35847235339394158100138240385, 4.43708997874958087758069894207, 4.80202232634207885304732900559, 4.99712873200408410429398761002, 5.44725657725167988838580996213, 5.67830604541890026810108894041, 5.72934784548585606706766407868, 6.00700754698867846014773369746, 6.25909602560367724146302844124, 6.68578315958118128747274737475, 6.92166442159257411947785103629, 7.06299408771861551595904807137, 7.43982266164931105211698921052, 7.58483552922305159556451678421, 7.78568402852589979850302836332, 7.898304037184150965892262877441

Graph of the $Z$-function along the critical line