L(s) = 1 | − 4·2-s − 9·3-s + 7·4-s − 15·5-s + 36·6-s − 4·7-s − 12·8-s + 54·9-s + 60·10-s + 33·11-s − 63·12-s + 16·14-s + 135·15-s − 7·16-s − 218·17-s − 216·18-s + 146·19-s − 105·20-s + 36·21-s − 132·22-s − 200·23-s + 108·24-s + 150·25-s − 270·27-s − 28·28-s + 68·29-s − 540·30-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.73·3-s + 7/8·4-s − 1.34·5-s + 2.44·6-s − 0.215·7-s − 0.530·8-s + 2·9-s + 1.89·10-s + 0.904·11-s − 1.51·12-s + 0.305·14-s + 2.32·15-s − 0.109·16-s − 3.11·17-s − 2.82·18-s + 1.76·19-s − 1.17·20-s + 0.374·21-s − 1.27·22-s − 1.81·23-s + 0.918·24-s + 6/5·25-s − 1.92·27-s − 0.188·28-s + 0.435·29-s − 3.28·30-s + ⋯ |
Λ(s)=(=(4492125s/2ΓC(s)3L(s)−Λ(4−s)
Λ(s)=(=(4492125s/2ΓC(s+3/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
4492125
= 33⋅53⋅113
|
Sign: |
−1
|
Analytic conductor: |
922.677 |
Root analytic conductor: |
3.12014 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 4492125, ( :3/2,3/2,3/2), −1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)3 |
| 5 | C1 | (1+pT)3 |
| 11 | C1 | (1−pT)3 |
good | 2 | S4×C2 | 1+p2T+9T2+5p2T3+9p3T4+p8T5+p9T6 |
| 7 | S4×C2 | 1+4T+601T2−1000T3+601p3T4+4p6T5+p9T6 |
| 13 | S4×C2 | 1+3031T2−34144T3+3031p3T4+p9T6 |
| 17 | S4×C2 | 1+218T+24419T2+1906964T3+24419p3T4+218p6T5+p9T6 |
| 19 | S4×C2 | 1−146T+25953T2−2033788T3+25953p3T4−146p6T5+p9T6 |
| 23 | S4×C2 | 1+200T+33829T2+4868464T3+33829p3T4+200p6T5+p9T6 |
| 29 | S4×C2 | 1−68T+18803T2−153848T3+18803p3T4−68p6T5+p9T6 |
| 31 | S4×C2 | 1+68T+66141T2+2239480T3+66141p3T4+68p6T5+p9T6 |
| 37 | S4×C2 | 1+390T+188419T2+40128292T3+188419p3T4+390p6T5+p9T6 |
| 41 | S4×C2 | 1+196T+4407pT2+22652824T3+4407p4T4+196p6T5+p9T6 |
| 43 | S4×C2 | 1+524T+209853T2+52049416T3+209853p3T4+524p6T5+p9T6 |
| 47 | S4×C2 | 1+60T+175549T2−8508216T3+175549p3T4+60p6T5+p9T6 |
| 53 | S4×C2 | 1+158T+185779T2+86620084T3+185779p3T4+158p6T5+p9T6 |
| 59 | S4×C2 | 1+1044T+680281T2+344604088T3+680281p3T4+1044p6T5+p9T6 |
| 61 | S4×C2 | 1−642T+620395T2−268686220T3+620395p3T4−642p6T5+p9T6 |
| 67 | S4×C2 | 1+236T+440081T2+229497800T3+440081p3T4+236p6T5+p9T6 |
| 71 | S4×C2 | 1+544T+944005T2+395960768T3+944005p3T4+544p6T5+p9T6 |
| 73 | S4×C2 | 1−900T+867475T2−705839944T3+867475p3T4−900p6T5+p9T6 |
| 79 | S4×C2 | 1+1586T+2041325T2+1549224716T3+2041325p3T4+1586p6T5+p9T6 |
| 83 | S4×C2 | 1+1582T+1407717T2+884488684T3+1407717p3T4+1582p6T5+p9T6 |
| 89 | S4×C2 | 1+2122T+3521847T2+3285333068T3+3521847p3T4+2122p6T5+p9T6 |
| 97 | S4×C2 | 1−618T+1446319T2−1351607564T3+1446319p3T4−618p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38396107918053199134896155671, −11.31503634546292837979045754117, −11.06426070673374402137520530015, −10.62572089363730959095947307234, −9.987695812572941867857313303660, −9.854746844123005947391193913803, −9.784012941071971075327506411725, −8.883988044396467932812105532638, −8.822250236537784233102160049972, −8.712145943629755070877300170293, −7.901200733731107632500869835234, −7.87615370331142558249828812588, −7.11217076462862682062123649881, −6.82088248415705226338381828771, −6.78837948449091974826726938817, −6.33632740601128452448267112696, −5.88239134962647394570004081477, −5.06730892068729817480269668819, −5.05832509076758630826783281233, −4.23912785895003769931341466511, −4.15210514423586779419605478593, −3.50437855314430610577113437027, −2.79927966384044821933287276777, −1.66260061704225131346789765018, −1.46313092156811801131018048418, 0, 0, 0,
1.46313092156811801131018048418, 1.66260061704225131346789765018, 2.79927966384044821933287276777, 3.50437855314430610577113437027, 4.15210514423586779419605478593, 4.23912785895003769931341466511, 5.05832509076758630826783281233, 5.06730892068729817480269668819, 5.88239134962647394570004081477, 6.33632740601128452448267112696, 6.78837948449091974826726938817, 6.82088248415705226338381828771, 7.11217076462862682062123649881, 7.87615370331142558249828812588, 7.901200733731107632500869835234, 8.712145943629755070877300170293, 8.822250236537784233102160049972, 8.883988044396467932812105532638, 9.784012941071971075327506411725, 9.854746844123005947391193913803, 9.987695812572941867857313303660, 10.62572089363730959095947307234, 11.06426070673374402137520530015, 11.31503634546292837979045754117, 11.38396107918053199134896155671