Properties

Label 6-165e3-1.1-c1e3-0-0
Degree $6$
Conductor $4492125$
Sign $1$
Analytic cond. $2.28708$
Root an. cond. $1.14783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 3·5-s − 3·6-s − 2·8-s + 6·9-s − 3·10-s + 3·11-s − 2·13-s + 9·15-s + 3·16-s − 2·17-s − 6·18-s + 8·19-s − 3·22-s − 6·24-s + 6·25-s + 2·26-s + 10·27-s − 10·29-s − 9·30-s + 8·31-s − 3·32-s + 9·33-s + 2·34-s − 6·37-s − 8·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1.34·5-s − 1.22·6-s − 0.707·8-s + 2·9-s − 0.948·10-s + 0.904·11-s − 0.554·13-s + 2.32·15-s + 3/4·16-s − 0.485·17-s − 1.41·18-s + 1.83·19-s − 0.639·22-s − 1.22·24-s + 6/5·25-s + 0.392·26-s + 1.92·27-s − 1.85·29-s − 1.64·30-s + 1.43·31-s − 0.530·32-s + 1.56·33-s + 0.342·34-s − 0.986·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4492125 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4492125 ^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(4492125\)    =    \(3^{3} \cdot 5^{3} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(2.28708\)
Root analytic conductor: \(1.14783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 4492125,\ (\ :1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.917333793\)
\(L(\frac12)\) \(\approx\) \(1.917333793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{3} \)
5$C_1$ \( ( 1 - T )^{3} \)
11$C_1$ \( ( 1 - T )^{3} \)
good2$S_4\times C_2$ \( 1 + T + T^{2} + 3 T^{3} + p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + 5 T^{2} + 16 T^{3} + 5 p T^{4} + p^{3} T^{6} \)
13$D_{6}$ \( 1 + 2 T + 27 T^{2} + 44 T^{3} + 27 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 2 T - T^{2} - 116 T^{3} - p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 8 T + 41 T^{2} - 144 T^{3} + 41 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 5 T^{2} - 128 T^{3} + 5 p T^{4} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 10 T + 99 T^{2} + 540 T^{3} + 99 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 8 T + 61 T^{2} - 368 T^{3} + 61 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{3} \)
41$S_4\times C_2$ \( 1 + 14 T + 167 T^{2} + 1156 T^{3} + 167 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 4 T + 49 T^{2} + 56 T^{3} + 49 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 8 T + 109 T^{2} + 624 T^{3} + 109 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 6 T + 107 T^{2} + 644 T^{3} + 107 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 12 T + 161 T^{2} - 1096 T^{3} + 161 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 6 T + 131 T^{2} + 484 T^{3} + 131 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 4 T + 153 T^{2} + 472 T^{3} + 153 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 8 T + 181 T^{2} - 1008 T^{3} + 181 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 14 T + 223 T^{2} + 1700 T^{3} + 223 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 12 T + 173 T^{2} - 1096 T^{3} + 173 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 129 T^{2} + 16 T^{3} + 129 p T^{4} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 10 T + 215 T^{2} + 1580 T^{3} + 215 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 22 T + 399 T^{2} - 4276 T^{3} + 399 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62822196198224312793954099477, −11.07438490942791748662188375193, −10.67583053527619316221666719387, −10.22522092354282361914276464389, −9.793351418890129402875682205784, −9.677502694457118962578811900873, −9.500944715438329343077022861271, −9.163818708618728402689466676586, −8.859761355428884293837685739872, −8.482778303087885725523643480396, −8.225417110936899030207095146560, −7.76164241959551357945705438995, −7.19047398192230772320628389952, −7.12172095303872960769828162694, −6.44595563315987795679485687678, −6.31759815614942937026701514685, −5.60470193420116721958565193421, −5.08681871823271152232878613928, −4.93818317682541769973429076548, −3.96023019054470350865869032629, −3.63384805082039212976634251896, −2.98687900930300527342281353628, −2.77030996269346022020828167441, −1.82173589598164427283868781627, −1.51833597436968515946119690247, 1.51833597436968515946119690247, 1.82173589598164427283868781627, 2.77030996269346022020828167441, 2.98687900930300527342281353628, 3.63384805082039212976634251896, 3.96023019054470350865869032629, 4.93818317682541769973429076548, 5.08681871823271152232878613928, 5.60470193420116721958565193421, 6.31759815614942937026701514685, 6.44595563315987795679485687678, 7.12172095303872960769828162694, 7.19047398192230772320628389952, 7.76164241959551357945705438995, 8.225417110936899030207095146560, 8.482778303087885725523643480396, 8.859761355428884293837685739872, 9.163818708618728402689466676586, 9.500944715438329343077022861271, 9.677502694457118962578811900873, 9.793351418890129402875682205784, 10.22522092354282361914276464389, 10.67583053527619316221666719387, 11.07438490942791748662188375193, 11.62822196198224312793954099477

Graph of the $Z$-function along the critical line