Properties

Label 6-1425e3-1.1-c1e3-0-0
Degree $6$
Conductor $2893640625$
Sign $1$
Analytic cond. $1473.24$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 8-s + 6·9-s − 3·11-s − 12·13-s + 6·17-s − 3·19-s + 9·23-s − 3·24-s − 10·27-s − 15·29-s + 15·31-s + 9·33-s − 12·37-s + 36·39-s + 12·41-s − 12·43-s − 12·47-s − 18·51-s + 9·53-s + 9·57-s + 12·59-s + 3·61-s − 7·64-s − 15·67-s − 27·69-s + 18·71-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.353·8-s + 2·9-s − 0.904·11-s − 3.32·13-s + 1.45·17-s − 0.688·19-s + 1.87·23-s − 0.612·24-s − 1.92·27-s − 2.78·29-s + 2.69·31-s + 1.56·33-s − 1.97·37-s + 5.76·39-s + 1.87·41-s − 1.82·43-s − 1.75·47-s − 2.52·51-s + 1.23·53-s + 1.19·57-s + 1.56·59-s + 0.384·61-s − 7/8·64-s − 1.83·67-s − 3.25·69-s + 2.13·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(1473.24\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 19^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7016594288\)
\(L(\frac12)\) \(\approx\) \(0.7016594288\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{3} \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{3} \)
good2$D_{6}$ \( 1 - T^{3} + p^{3} T^{6} \)
7$D_{6}$ \( 1 - 16 T^{3} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 + 3 T + 21 T^{2} + 50 T^{3} + 21 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{3} \)
17$S_4\times C_2$ \( 1 - 6 T + 15 T^{2} + 4 T^{3} + 15 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 9 T + 75 T^{2} - 362 T^{3} + 75 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{3} \)
31$S_4\times C_2$ \( 1 - 15 T + 153 T^{2} - 978 T^{3} + 153 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 12 T + 135 T^{2} + 864 T^{3} + 135 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 12 T + 156 T^{2} - 990 T^{3} + 156 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{3} \)
47$S_4\times C_2$ \( 1 + 12 T + 129 T^{2} + 936 T^{3} + 129 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 9 T + 90 T^{2} - 757 T^{3} + 90 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 12 T + 168 T^{2} - 1096 T^{3} + 168 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 3 T + 126 T^{2} - 323 T^{3} + 126 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 15 T + 261 T^{2} + 2062 T^{3} + 261 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 18 T + 264 T^{2} - 2274 T^{3} + 264 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 3 T + 126 T^{2} + 407 T^{3} + 126 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 3 T + 51 T^{2} + 146 T^{3} + 51 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 3 T + 237 T^{2} + 486 T^{3} + 237 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 3 T + 186 T^{2} + 579 T^{3} + 186 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 12 T + 219 T^{2} - 1424 T^{3} + 219 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.387353669502539239257027717848, −7.955343051482554743636463591493, −7.909587430441578495246300647404, −7.57215368575894029225126272950, −7.30228493713421563642290511461, −7.00541146682420557332090771025, −7.00340272109765059116676305406, −6.59989513725105692016051600026, −6.32060936102094730119476188868, −5.69310278425617168497403709206, −5.67152466362370697840996444150, −5.33101823238736231735751297204, −5.15532639751351822631500293161, −4.75493741023994062665024257310, −4.66870305760039868359795825944, −4.54160591641743018432560801856, −3.83758430565656997567348317645, −3.48385403646453888532603394780, −3.15801417653304313122109978874, −2.54311255010881289997729599166, −2.49511161767803834173530802904, −1.84102821426157167039284467707, −1.54543612997203441825260157120, −0.70162405211992831969136414208, −0.36753422753951969806669635017, 0.36753422753951969806669635017, 0.70162405211992831969136414208, 1.54543612997203441825260157120, 1.84102821426157167039284467707, 2.49511161767803834173530802904, 2.54311255010881289997729599166, 3.15801417653304313122109978874, 3.48385403646453888532603394780, 3.83758430565656997567348317645, 4.54160591641743018432560801856, 4.66870305760039868359795825944, 4.75493741023994062665024257310, 5.15532639751351822631500293161, 5.33101823238736231735751297204, 5.67152466362370697840996444150, 5.69310278425617168497403709206, 6.32060936102094730119476188868, 6.59989513725105692016051600026, 7.00340272109765059116676305406, 7.00541146682420557332090771025, 7.30228493713421563642290511461, 7.57215368575894029225126272950, 7.909587430441578495246300647404, 7.955343051482554743636463591493, 8.387353669502539239257027717848

Graph of the $Z$-function along the critical line