# Properties

 Label 6-135e3-1.1-c3e3-0-2 Degree $6$ Conductor $2460375$ Sign $1$ Analytic cond. $505.358$ Root an. cond. $2.82227$ Motivic weight $3$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 2-s + 15·5-s + 44·7-s − 9·8-s − 15·10-s + 38·11-s + 28·13-s − 44·14-s + 11·16-s − 19·17-s + 187·19-s − 38·22-s − 81·23-s + 150·25-s − 28·26-s + 160·29-s + 227·31-s − 58·32-s + 19·34-s + 660·35-s + 78·37-s − 187·38-s − 135·40-s − 338·41-s + 22·43-s + 81·46-s − 472·47-s + ⋯
 L(s)  = 1 − 0.353·2-s + 1.34·5-s + 2.37·7-s − 0.397·8-s − 0.474·10-s + 1.04·11-s + 0.597·13-s − 0.839·14-s + 0.171·16-s − 0.271·17-s + 2.25·19-s − 0.368·22-s − 0.734·23-s + 6/5·25-s − 0.211·26-s + 1.02·29-s + 1.31·31-s − 0.320·32-s + 0.0958·34-s + 3.18·35-s + 0.346·37-s − 0.798·38-s − 0.533·40-s − 1.28·41-s + 0.0780·43-s + 0.259·46-s − 1.46·47-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 2460375 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 2460375 ^{s/2} \, \Gamma_{\C}(s+3/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$6$$ Conductor: $$2460375$$    =    $$3^{9} \cdot 5^{3}$$ Sign: $1$ Analytic conductor: $$505.358$$ Root analytic conductor: $$2.82227$$ Motivic weight: $$3$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{135} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(6,\ 2460375,\ (\ :3/2, 3/2, 3/2),\ 1)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$5.502362160$$ $$L(\frac12)$$ $$\approx$$ $$5.502362160$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad3 $$1$$
5$C_1$ $$( 1 - p T )^{3}$$
good2$S_4\times C_2$ $$1 + T + T^{2} + 5 p T^{3} + p^{3} T^{4} + p^{6} T^{5} + p^{9} T^{6}$$
7$S_4\times C_2$ $$1 - 44 T + 1581 T^{2} - 31984 T^{3} + 1581 p^{3} T^{4} - 44 p^{6} T^{5} + p^{9} T^{6}$$
11$S_4\times C_2$ $$1 - 38 T + 1381 T^{2} - 17876 T^{3} + 1381 p^{3} T^{4} - 38 p^{6} T^{5} + p^{9} T^{6}$$
13$S_4\times C_2$ $$1 - 28 T + 155 p T^{2} - 22912 T^{3} + 155 p^{4} T^{4} - 28 p^{6} T^{5} + p^{9} T^{6}$$
17$S_4\times C_2$ $$1 + 19 T + 3262 T^{2} - 367193 T^{3} + 3262 p^{3} T^{4} + 19 p^{6} T^{5} + p^{9} T^{6}$$
19$S_4\times C_2$ $$1 - 187 T + 24164 T^{2} - 2039395 T^{3} + 24164 p^{3} T^{4} - 187 p^{6} T^{5} + p^{9} T^{6}$$
23$S_4\times C_2$ $$1 + 81 T + 13200 T^{2} - 72927 T^{3} + 13200 p^{3} T^{4} + 81 p^{6} T^{5} + p^{9} T^{6}$$
29$S_4\times C_2$ $$1 - 160 T + 25399 T^{2} + 88280 T^{3} + 25399 p^{3} T^{4} - 160 p^{6} T^{5} + p^{9} T^{6}$$
31$S_4\times C_2$ $$1 - 227 T + 71400 T^{2} - 13771435 T^{3} + 71400 p^{3} T^{4} - 227 p^{6} T^{5} + p^{9} T^{6}$$
37$S_4\times C_2$ $$1 - 78 T + 52035 T^{2} + 5735212 T^{3} + 52035 p^{3} T^{4} - 78 p^{6} T^{5} + p^{9} T^{6}$$
41$S_4\times C_2$ $$1 + 338 T + 163951 T^{2} + 34473956 T^{3} + 163951 p^{3} T^{4} + 338 p^{6} T^{5} + p^{9} T^{6}$$
43$S_4\times C_2$ $$1 - 22 T + 78605 T^{2} + 14966252 T^{3} + 78605 p^{3} T^{4} - 22 p^{6} T^{5} + p^{9} T^{6}$$
47$S_4\times C_2$ $$1 + 472 T + 365677 T^{2} + 97725712 T^{3} + 365677 p^{3} T^{4} + 472 p^{6} T^{5} + p^{9} T^{6}$$
53$S_4\times C_2$ $$1 - 521 T + 508018 T^{2} - 154190045 T^{3} + 508018 p^{3} T^{4} - 521 p^{6} T^{5} + p^{9} T^{6}$$
59$S_4\times C_2$ $$1 - 140 T + 449689 T^{2} - 23374640 T^{3} + 449689 p^{3} T^{4} - 140 p^{6} T^{5} + p^{9} T^{6}$$
61$S_4\times C_2$ $$1 - 595 T + 678194 T^{2} - 268324783 T^{3} + 678194 p^{3} T^{4} - 595 p^{6} T^{5} + p^{9} T^{6}$$
67$S_4\times C_2$ $$1 - 878 T + 978237 T^{2} - 516844828 T^{3} + 978237 p^{3} T^{4} - 878 p^{6} T^{5} + p^{9} T^{6}$$
71$S_4\times C_2$ $$1 + 602 T + 490081 T^{2} + 150373964 T^{3} + 490081 p^{3} T^{4} + 602 p^{6} T^{5} + p^{9} T^{6}$$
73$S_4\times C_2$ $$1 - 1294 T + 1071143 T^{2} - 602684716 T^{3} + 1071143 p^{3} T^{4} - 1294 p^{6} T^{5} + p^{9} T^{6}$$
79$S_4\times C_2$ $$1 - 629 T + 1576176 T^{2} - 622253365 T^{3} + 1576176 p^{3} T^{4} - 629 p^{6} T^{5} + p^{9} T^{6}$$
83$S_4\times C_2$ $$1 + 1287 T + 1349484 T^{2} + 1125375327 T^{3} + 1349484 p^{3} T^{4} + 1287 p^{6} T^{5} + p^{9} T^{6}$$
89$S_4\times C_2$ $$1 - 2154 T + 3172479 T^{2} - 3111332052 T^{3} + 3172479 p^{3} T^{4} - 2154 p^{6} T^{5} + p^{9} T^{6}$$
97$S_4\times C_2$ $$1 - 1392 T + 3281955 T^{2} - 2604477152 T^{3} + 3281955 p^{3} T^{4} - 1392 p^{6} T^{5} + p^{9} T^{6}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$