Properties

Label 6-1080e3-1.1-c5e3-0-1
Degree $6$
Conductor $1259712000$
Sign $-1$
Analytic cond. $5.19700\times 10^{6}$
Root an. cond. $13.1610$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 75·5-s − 30·7-s − 660·11-s − 1.27e3·13-s + 1.73e3·17-s + 1.01e3·19-s + 2.43e3·23-s + 3.75e3·25-s + 3.78e3·29-s + 4.13e3·31-s − 2.25e3·35-s − 7.12e3·37-s + 1.73e4·41-s + 1.15e4·43-s − 1.95e4·47-s − 2.86e4·49-s − 4.96e3·53-s − 4.95e4·55-s − 3.21e4·59-s − 1.63e4·61-s − 9.58e4·65-s − 5.12e4·67-s − 8.40e4·71-s − 1.61e5·73-s + 1.98e4·77-s + 3.64e4·79-s − 6.45e4·83-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.231·7-s − 1.64·11-s − 2.09·13-s + 1.45·17-s + 0.642·19-s + 0.959·23-s + 6/5·25-s + 0.835·29-s + 0.772·31-s − 0.310·35-s − 0.855·37-s + 1.61·41-s + 0.953·43-s − 1.29·47-s − 1.70·49-s − 0.242·53-s − 2.20·55-s − 1.20·59-s − 0.561·61-s − 2.81·65-s − 1.39·67-s − 1.97·71-s − 3.55·73-s + 0.380·77-s + 0.656·79-s − 1.02·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 3^{9} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 3^{9} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 3^{9} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(5.19700\times 10^{6}\)
Root analytic conductor: \(13.1610\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{9} \cdot 3^{9} \cdot 5^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - p^{2} T )^{3} \)
good7$S_4\times C_2$ \( 1 + 30 T + 4227 p T^{2} + 1944844 T^{3} + 4227 p^{6} T^{4} + 30 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 + 60 p T + 369069 T^{2} + 195617600 T^{3} + 369069 p^{5} T^{4} + 60 p^{11} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 1278 T + 1399023 T^{2} + 886453940 T^{3} + 1399023 p^{5} T^{4} + 1278 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 1731 T + 4195482 T^{2} - 4553493875 T^{3} + 4195482 p^{5} T^{4} - 1731 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 1011 T + 4567560 T^{2} - 3940193383 T^{3} + 4567560 p^{5} T^{4} - 1011 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 2433 T + 3736224 T^{2} - 15021612913 T^{3} + 3736224 p^{5} T^{4} - 2433 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 3786 T + 25703655 T^{2} - 55079231788 T^{3} + 25703655 p^{5} T^{4} - 3786 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 - 4131 T + 76999284 T^{2} - 199758612823 T^{3} + 76999284 p^{5} T^{4} - 4131 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 7122 T + 106725675 T^{2} + 976455033036 T^{3} + 106725675 p^{5} T^{4} + 7122 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 17352 T + 307979727 T^{2} - 4000851697032 T^{3} + 307979727 p^{5} T^{4} - 17352 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 11556 T + 407786805 T^{2} - 3323569921792 T^{3} + 407786805 p^{5} T^{4} - 11556 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 19548 T + 757259373 T^{2} + 9014704644872 T^{3} + 757259373 p^{5} T^{4} + 19548 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 4965 T + 501644238 T^{2} + 10353376238325 T^{3} + 501644238 p^{5} T^{4} + 4965 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 32106 T + 1846016361 T^{2} + 36041350434772 T^{3} + 1846016361 p^{5} T^{4} + 32106 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 16317 T + 1644398874 T^{2} + 11869127424641 T^{3} + 1644398874 p^{5} T^{4} + 16317 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 51258 T + 3521678901 T^{2} + 118259129900212 T^{3} + 3521678901 p^{5} T^{4} + 51258 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 84072 T + 5874688977 T^{2} + 256382468458392 T^{3} + 5874688977 p^{5} T^{4} + 84072 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 161892 T + 14207002167 T^{2} + 791040688088256 T^{3} + 14207002167 p^{5} T^{4} + 161892 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 36441 T + 1760859156 T^{2} + 82354833751563 T^{3} + 1760859156 p^{5} T^{4} - 36441 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 64581 T + 2437979532 T^{2} - 114994527029099 T^{3} + 2437979532 p^{5} T^{4} + 64581 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 61584 T + 9105757071 T^{2} + 534875973508248 T^{3} + 9105757071 p^{5} T^{4} + 61584 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 14760 T + 23538340899 T^{2} - 216826936384336 T^{3} + 23538340899 p^{5} T^{4} - 14760 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.655839943147820546704809528965, −7.949486023037907980888340180392, −7.82977658096385493135868915294, −7.77605249925952546400895514265, −7.14976354801589415242194010415, −7.13798897189126254363907005515, −7.11530545904212682959362853925, −6.20615080221063519767365393617, −6.17990760770706044937820075907, −5.96484926415612947480460256912, −5.58681221440291621648309813303, −5.19246230038070307888587659250, −5.17204782195912322414206774059, −4.61090072866980858870119783762, −4.56087833620031521970769749332, −4.39810570537217345453753940240, −3.30713960516903769031104794603, −3.27342826975142905638178298159, −2.98707134191599371575458763215, −2.73468382366069309734315184435, −2.26735498587136408784369542264, −2.25036675021673690867159348742, −1.31872721474985532109565128083, −1.31592673365378363861948691499, −1.07165719624001519837583142070, 0, 0, 0, 1.07165719624001519837583142070, 1.31592673365378363861948691499, 1.31872721474985532109565128083, 2.25036675021673690867159348742, 2.26735498587136408784369542264, 2.73468382366069309734315184435, 2.98707134191599371575458763215, 3.27342826975142905638178298159, 3.30713960516903769031104794603, 4.39810570537217345453753940240, 4.56087833620031521970769749332, 4.61090072866980858870119783762, 5.17204782195912322414206774059, 5.19246230038070307888587659250, 5.58681221440291621648309813303, 5.96484926415612947480460256912, 6.17990760770706044937820075907, 6.20615080221063519767365393617, 7.11530545904212682959362853925, 7.13798897189126254363907005515, 7.14976354801589415242194010415, 7.77605249925952546400895514265, 7.82977658096385493135868915294, 7.949486023037907980888340180392, 8.655839943147820546704809528965

Graph of the $Z$-function along the critical line