Properties

Label 48-2523e24-1.1-c0e24-0-0
Degree $48$
Conductor $4.426\times 10^{81}$
Sign $1$
Analytic cond. $252.223$
Root an. cond. $1.12211$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 2·7-s + 2·9-s − 2·13-s + 6·16-s − 4·25-s + 8·28-s + 8·36-s + 3·49-s − 8·52-s + 4·63-s + 4·64-s − 2·67-s + 81-s − 4·91-s − 16·100-s + 2·103-s − 2·109-s + 12·112-s − 4·117-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 149-s + ⋯
L(s)  = 1  + 4·4-s + 2·7-s + 2·9-s − 2·13-s + 6·16-s − 4·25-s + 8·28-s + 8·36-s + 3·49-s − 8·52-s + 4·63-s + 4·64-s − 2·67-s + 81-s − 4·91-s − 16·100-s + 2·103-s − 2·109-s + 12·112-s − 4·117-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 29^{48}\right)^{s/2} \, \Gamma_{\C}(s)^{24} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 29^{48}\right)^{s/2} \, \Gamma_{\C}(s)^{24} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(48\)
Conductor: \(3^{24} \cdot 29^{48}\)
Sign: $1$
Analytic conductor: \(252.223\)
Root analytic conductor: \(1.12211\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((48,\ 3^{24} \cdot 29^{48} ,\ ( \ : [0]^{24} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(6.101315168\)
\(L(\frac12)\) \(\approx\) \(6.101315168\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \)
29 \( 1 \)
good2 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
5 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
7 \( ( 1 - T + T^{5} - T^{6} + T^{7} - T^{8} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{16} + T^{17} - T^{18} + T^{19} - T^{23} + T^{24} )^{2} \)
11 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
13 \( ( 1 + T - T^{5} - T^{6} - T^{7} - T^{8} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} - T^{16} - T^{17} - T^{18} - T^{19} + T^{23} + T^{24} )^{2} \)
17 \( ( 1 + T^{2} )^{24} \)
19 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
23 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
31 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
37 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
41 \( ( 1 + T^{2} )^{24} \)
43 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
47 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
53 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
59 \( ( 1 - T )^{24}( 1 + T )^{24} \)
61 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
67 \( ( 1 + T - T^{5} - T^{6} - T^{7} - T^{8} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} - T^{16} - T^{17} - T^{18} - T^{19} + T^{23} + T^{24} )^{2} \)
71 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
73 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
79 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
89 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
97 \( 1 + T^{2} - T^{10} - T^{12} - T^{14} - T^{16} + T^{20} + T^{22} + T^{24} + T^{26} + T^{28} - T^{32} - T^{34} - T^{36} - T^{38} + T^{46} + T^{48} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{48} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−1.99807705137150253941996510453, −1.95655758618763198208599369894, −1.88415597651392593574899784920, −1.71639290035704922173673165775, −1.70061124788177607234121540452, −1.58068628289035731063943644014, −1.55985506045017868383519535106, −1.51110283172942226236013210585, −1.51101839856269378776781649414, −1.42468404928078472860675137237, −1.41706068632629056491045422042, −1.35371139107904117761525929787, −1.31644057167563678991335379583, −1.31016054440299041107434375314, −1.17430637657626183448384312927, −1.10318329860255211215828082534, −1.06639215672873844562521664396, −1.01006827646402410802868161425, −0.907283815424059814689246507850, −0.800422261972713066664649704950, −0.797817780164104121578615914482, −0.66185113984262191023502915910, −0.58662283106179555050582212728, −0.40070512339981147031590914024, −0.23579361826986376441570693428, 0.23579361826986376441570693428, 0.40070512339981147031590914024, 0.58662283106179555050582212728, 0.66185113984262191023502915910, 0.797817780164104121578615914482, 0.800422261972713066664649704950, 0.907283815424059814689246507850, 1.01006827646402410802868161425, 1.06639215672873844562521664396, 1.10318329860255211215828082534, 1.17430637657626183448384312927, 1.31016054440299041107434375314, 1.31644057167563678991335379583, 1.35371139107904117761525929787, 1.41706068632629056491045422042, 1.42468404928078472860675137237, 1.51101839856269378776781649414, 1.51110283172942226236013210585, 1.55985506045017868383519535106, 1.58068628289035731063943644014, 1.70061124788177607234121540452, 1.71639290035704922173673165775, 1.88415597651392593574899784920, 1.95655758618763198208599369894, 1.99807705137150253941996510453

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.