Properties

Label 40-1340e20-1.1-c0e20-0-0
Degree $40$
Conductor $3.484\times 10^{62}$
Sign $1$
Analytic cond. $0.000320065$
Root an. cond. $0.817769$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s − 2·5-s + 2·6-s − 7-s + 3·9-s − 2·10-s + 2·12-s − 14-s − 4·15-s + 3·18-s − 2·20-s − 2·21-s − 23-s + 25-s + 2·27-s − 28-s − 29-s − 4·30-s + 2·35-s + 3·36-s − 41-s − 2·42-s − 9·43-s − 6·45-s − 46-s + ⋯
L(s)  = 1  + 2-s + 2·3-s + 4-s − 2·5-s + 2·6-s − 7-s + 3·9-s − 2·10-s + 2·12-s − 14-s − 4·15-s + 3·18-s − 2·20-s − 2·21-s − 23-s + 25-s + 2·27-s − 28-s − 29-s − 4·30-s + 2·35-s + 3·36-s − 41-s − 2·42-s − 9·43-s − 6·45-s − 46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 5^{20} \cdot 67^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 5^{20} \cdot 67^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(40\)
Conductor: \(2^{40} \cdot 5^{20} \cdot 67^{20}\)
Sign: $1$
Analytic conductor: \(0.000320065\)
Root analytic conductor: \(0.817769\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1340} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((40,\ 2^{40} \cdot 5^{20} \cdot 67^{20} ,\ ( \ : [0]^{20} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.002986793473\)
\(L(\frac12)\) \(\approx\) \(0.002986793473\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} \)
5 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
67 \( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} \)
good3 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
7 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
11 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
13 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
17 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
19 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
23 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
29 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
31 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
37 \( ( 1 - T + T^{2} )^{10}( 1 + T + T^{2} )^{10} \)
41 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
43 \( ( 1 + T + T^{2} )^{10}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
47 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
53 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
59 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
61 \( ( 1 + T + T^{2} )^{10}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
71 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
73 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
79 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
83 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
89 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{4} \)
97 \( ( 1 - T + T^{2} )^{10}( 1 + T + T^{2} )^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.43425111801727657839615423428, −2.40561407232622758812268283252, −2.20192688867633783617838210748, −2.19853831621678677445554647746, −2.02031653844003743367190210235, −1.97931842692408428399381407032, −1.96584864339041134867457501641, −1.89196042856425458901775615442, −1.87288086627932863169180885589, −1.83065906616659269374068496262, −1.80517654212942364445901424511, −1.74815796455683112391524173057, −1.61959293069062669040245114525, −1.47000950432722522779757740882, −1.44137481426592101864935609937, −1.31644933836366099901219316223, −1.30936463340297473600314937289, −1.30865228374160533406635966033, −1.30335897707213693143106926854, −1.20922598231804179553607016683, −1.07714906912893383293377559048, −1.03652046509493954394949484314, −0.67354295033210960361928083701, −0.17551713050757869359012690629, −0.04581148284124836731058522542, 0.04581148284124836731058522542, 0.17551713050757869359012690629, 0.67354295033210960361928083701, 1.03652046509493954394949484314, 1.07714906912893383293377559048, 1.20922598231804179553607016683, 1.30335897707213693143106926854, 1.30865228374160533406635966033, 1.30936463340297473600314937289, 1.31644933836366099901219316223, 1.44137481426592101864935609937, 1.47000950432722522779757740882, 1.61959293069062669040245114525, 1.74815796455683112391524173057, 1.80517654212942364445901424511, 1.83065906616659269374068496262, 1.87288086627932863169180885589, 1.89196042856425458901775615442, 1.96584864339041134867457501641, 1.97931842692408428399381407032, 2.02031653844003743367190210235, 2.19853831621678677445554647746, 2.20192688867633783617838210748, 2.40561407232622758812268283252, 2.43425111801727657839615423428

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.