Properties

Label 40-1191e20-1.1-c0e20-0-1
Degree $40$
Conductor $3.298\times 10^{61}$
Sign $1$
Analytic cond. $3.02954\times 10^{-5}$
Root an. cond. $0.770964$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯
L(s)  = 1  + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(40\)
Conductor: \(3^{20} \cdot 397^{20}\)
Sign: $1$
Analytic conductor: \(3.02954\times 10^{-5}\)
Root analytic conductor: \(0.770964\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1191} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((40,\ 3^{20} \cdot 397^{20} ,\ ( \ : [0]^{20} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.470383805\)
\(L(\frac12)\) \(\approx\) \(2.470383805\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} \)
397 \( ( 1 - T )^{20} \)
good2 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \)
5 \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \)
7 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
11 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
13 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
17 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \)
19 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
23 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
29 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
31 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
37 \( ( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2} \)
41 \( ( 1 - T^{2} + T^{4} )^{10} \)
43 \( ( 1 - T + T^{2} )^{10}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
47 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
53 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \)
59 \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \)
61 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
67 \( ( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2} \)
71 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \)
73 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
89 \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \)
97 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.45278618883605578430725195747, −2.31505568506258091268304537424, −2.29363199859845118940135218515, −2.17846112699346263195687799252, −2.14098193585063054783803207997, −2.07024043898759107144297437644, −2.02671623177416754082186617015, −1.99986209628792604472648204882, −1.99928095693808712463292653951, −1.91199600455429733036112696649, −1.90795356020371765507129609619, −1.80972286849330569909356780281, −1.68066703876015595368781172973, −1.61992630781522830491126593692, −1.60120302223673867464325490395, −1.30482457263549992950813514192, −1.22231599104511510944417701294, −1.22126886167096375928948228949, −1.21606867169053294803011104188, −1.12082148950796432310282603623, −1.11735714751445065116988286945, −1.09228639971093273880120074185, −0.76606977832280473787995230285, −0.66604155894754888257331064168, −0.65238113681850315714511191809, 0.65238113681850315714511191809, 0.66604155894754888257331064168, 0.76606977832280473787995230285, 1.09228639971093273880120074185, 1.11735714751445065116988286945, 1.12082148950796432310282603623, 1.21606867169053294803011104188, 1.22126886167096375928948228949, 1.22231599104511510944417701294, 1.30482457263549992950813514192, 1.60120302223673867464325490395, 1.61992630781522830491126593692, 1.68066703876015595368781172973, 1.80972286849330569909356780281, 1.90795356020371765507129609619, 1.91199600455429733036112696649, 1.99928095693808712463292653951, 1.99986209628792604472648204882, 2.02671623177416754082186617015, 2.07024043898759107144297437644, 2.14098193585063054783803207997, 2.17846112699346263195687799252, 2.29363199859845118940135218515, 2.31505568506258091268304537424, 2.45278618883605578430725195747

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.