# Properties

 Label 40-1191e20-1.1-c0e20-0-1 Degree $40$ Conductor $3.298\times 10^{61}$ Sign $1$ Analytic cond. $3.02954\times 10^{-5}$ Root an. cond. $0.770964$ Motivic weight $0$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯
 L(s)  = 1 + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$40$$ Conductor: $$3^{20} \cdot 397^{20}$$ Sign: $1$ Analytic conductor: $$3.02954\times 10^{-5}$$ Root analytic conductor: $$0.770964$$ Motivic weight: $$0$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{1191} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(40,\ 3^{20} \cdot 397^{20} ,\ ( \ : [0]^{20} ),\ 1 )$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$2.470383805$$ $$L(\frac12)$$ $$\approx$$ $$2.470383805$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20}$$
397 $$( 1 - T )^{20}$$
good2 $$( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2}$$
5 $$1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40}$$
7 $$( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )$$
11 $$( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
13 $$( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
17 $$( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2}$$
19 $$( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )$$
23 $$( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
29 $$( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
31 $$( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2}$$
37 $$( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2}$$
41 $$( 1 - T^{2} + T^{4} )^{10}$$
43 $$( 1 - T + T^{2} )^{10}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
47 $$( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
53 $$( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2}$$
59 $$1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40}$$
61 $$( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )$$
67 $$( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2}$$
71 $$( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2}$$
73 $$( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )$$
79 $$( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
83 $$( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}$$
89 $$1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40}$$
97 $$( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$