Properties

Label 40-117e20-1.1-c4e20-0-1
Degree $40$
Conductor $2.311\times 10^{41}$
Sign $1$
Analytic cond. $4.48336\times 10^{21}$
Root an. cond. $3.47768$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·7-s + 184·13-s + 186·16-s − 1.03e3·19-s + 2.84e3·31-s + 452·37-s + 288·49-s + 8.40e3·61-s − 3.62e3·67-s − 2.17e4·73-s − 1.03e4·79-s − 4.41e3·91-s − 8.98e4·97-s + 7.40e4·109-s − 4.46e3·112-s + 127-s + 131-s + 2.47e4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.71e4·169-s + 173-s + ⋯
L(s)  = 1  − 0.489·7-s + 1.08·13-s + 0.726·16-s − 2.85·19-s + 2.95·31-s + 0.330·37-s + 0.119·49-s + 2.25·61-s − 0.807·67-s − 4.07·73-s − 1.66·79-s − 0.533·91-s − 9.54·97-s + 6.23·109-s − 0.355·112-s + 6.20e−5·127-s + 5.82e−5·131-s + 1.40·133-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + 0.600·169-s + 3.34e−5·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{40} \cdot 13^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{40} \cdot 13^{20}\right)^{s/2} \, \Gamma_{\C}(s+2)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(40\)
Conductor: \(3^{40} \cdot 13^{20}\)
Sign: $1$
Analytic conductor: \(4.48336\times 10^{21}\)
Root analytic conductor: \(3.47768\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((40,\ 3^{40} \cdot 13^{20} ,\ ( \ : [2]^{20} ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(12.75393758\)
\(L(\frac12)\) \(\approx\) \(12.75393758\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( ( 1 - 92 T + 317 p T^{2} + 8912 p T^{3} + 964070 p^{2} T^{4} - 591688 p^{5} T^{5} + 964070 p^{6} T^{6} + 8912 p^{9} T^{7} + 317 p^{13} T^{8} - 92 p^{16} T^{9} + p^{20} T^{10} )^{2} \)
good2 \( 1 - 93 p T^{4} + 81505 T^{8} - 6267917 p^{2} T^{12} + 544818835 p^{4} T^{16} - 13157598215 p^{6} T^{20} + 544818835 p^{20} T^{24} - 6267917 p^{34} T^{28} + 81505 p^{48} T^{32} - 93 p^{65} T^{36} + p^{80} T^{40} \)
5 \( 1 - 615642 T^{4} + 208961610829 T^{8} - 69095118676607864 T^{12} + \)\(77\!\cdots\!54\)\( p T^{16} - \)\(23\!\cdots\!24\)\( T^{20} + \)\(77\!\cdots\!54\)\( p^{17} T^{24} - 69095118676607864 p^{32} T^{28} + 208961610829 p^{48} T^{32} - 615642 p^{64} T^{36} + p^{80} T^{40} \)
7 \( ( 1 + 12 T + 72 T^{2} - 149276 T^{3} - 5057999 T^{4} + 56969928 T^{5} + 12189477152 T^{6} + 165015912904 p T^{7} + 32976411773902 T^{8} - 2184258717276464 T^{9} - 137738664564139600 T^{10} - 2184258717276464 p^{4} T^{11} + 32976411773902 p^{8} T^{12} + 165015912904 p^{13} T^{13} + 12189477152 p^{16} T^{14} + 56969928 p^{20} T^{15} - 5057999 p^{24} T^{16} - 149276 p^{28} T^{17} + 72 p^{32} T^{18} + 12 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
11 \( 1 - 23851866 p T^{4} + 35033948562758077 T^{8} + \)\(66\!\cdots\!28\)\( T^{12} + \)\(17\!\cdots\!26\)\( T^{16} - \)\(95\!\cdots\!96\)\( T^{20} + \)\(17\!\cdots\!26\)\( p^{16} T^{24} + \)\(66\!\cdots\!28\)\( p^{32} T^{28} + 35033948562758077 p^{48} T^{32} - 23851866 p^{65} T^{36} + p^{80} T^{40} \)
17 \( ( 1 - 226522 T^{2} + 22203479853 T^{4} - 1794867031058232 T^{6} + \)\(22\!\cdots\!34\)\( T^{8} - \)\(24\!\cdots\!08\)\( T^{10} + \)\(22\!\cdots\!34\)\( p^{8} T^{12} - 1794867031058232 p^{16} T^{14} + 22203479853 p^{24} T^{16} - 226522 p^{32} T^{18} + p^{40} T^{20} )^{2} \)
19 \( ( 1 + 516 T + 133128 T^{2} + 60343756 T^{3} + 6209253457 T^{4} - 3606145512552 T^{5} - 866712134606560 T^{6} - 426170978368170200 T^{7} - \)\(13\!\cdots\!34\)\( T^{8} - \)\(15\!\cdots\!32\)\( T^{9} - \)\(38\!\cdots\!88\)\( T^{10} - \)\(15\!\cdots\!32\)\( p^{4} T^{11} - \)\(13\!\cdots\!34\)\( p^{8} T^{12} - 426170978368170200 p^{12} T^{13} - 866712134606560 p^{16} T^{14} - 3606145512552 p^{20} T^{15} + 6209253457 p^{24} T^{16} + 60343756 p^{28} T^{17} + 133128 p^{32} T^{18} + 516 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
23 \( ( 1 - 1764706 T^{2} + 1452318022845 T^{4} - 760738245306207096 T^{6} + \)\(12\!\cdots\!38\)\( p T^{8} - \)\(90\!\cdots\!76\)\( T^{10} + \)\(12\!\cdots\!38\)\( p^{9} T^{12} - 760738245306207096 p^{16} T^{14} + 1452318022845 p^{24} T^{16} - 1764706 p^{32} T^{18} + p^{40} T^{20} )^{2} \)
29 \( ( 1 + 3460710 T^{2} + 6693089241517 T^{4} + 8924811199889379976 T^{6} + \)\(90\!\cdots\!26\)\( T^{8} + \)\(71\!\cdots\!16\)\( T^{10} + \)\(90\!\cdots\!26\)\( p^{8} T^{12} + 8924811199889379976 p^{16} T^{14} + 6693089241517 p^{24} T^{16} + 3460710 p^{32} T^{18} + p^{40} T^{20} )^{2} \)
31 \( ( 1 - 1420 T + 1008200 T^{2} - 1698812324 T^{3} + 2188589515057 T^{4} - 807320205043336 T^{5} + 382840398168210208 T^{6} - \)\(46\!\cdots\!40\)\( T^{7} - \)\(54\!\cdots\!14\)\( T^{8} + \)\(10\!\cdots\!12\)\( T^{9} - \)\(68\!\cdots\!88\)\( T^{10} + \)\(10\!\cdots\!12\)\( p^{4} T^{11} - \)\(54\!\cdots\!14\)\( p^{8} T^{12} - \)\(46\!\cdots\!40\)\( p^{12} T^{13} + 382840398168210208 p^{16} T^{14} - 807320205043336 p^{20} T^{15} + 2188589515057 p^{24} T^{16} - 1698812324 p^{28} T^{17} + 1008200 p^{32} T^{18} - 1420 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
37 \( ( 1 - 226 T + 25538 T^{2} - 2603391938 T^{3} + 2126040092509 T^{4} + 4742577048717704 T^{5} + 2262707566529001976 T^{6} - \)\(52\!\cdots\!20\)\( T^{7} - \)\(17\!\cdots\!66\)\( T^{8} + \)\(24\!\cdots\!32\)\( T^{9} + \)\(14\!\cdots\!60\)\( T^{10} + \)\(24\!\cdots\!32\)\( p^{4} T^{11} - \)\(17\!\cdots\!66\)\( p^{8} T^{12} - \)\(52\!\cdots\!20\)\( p^{12} T^{13} + 2262707566529001976 p^{16} T^{14} + 4742577048717704 p^{20} T^{15} + 2126040092509 p^{24} T^{16} - 2603391938 p^{28} T^{17} + 25538 p^{32} T^{18} - 226 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
41 \( 1 + 2137885117158 T^{4} - \)\(88\!\cdots\!47\)\( T^{8} - \)\(78\!\cdots\!96\)\( T^{12} + \)\(21\!\cdots\!62\)\( T^{16} + \)\(82\!\cdots\!48\)\( T^{20} + \)\(21\!\cdots\!62\)\( p^{16} T^{24} - \)\(78\!\cdots\!96\)\( p^{32} T^{28} - \)\(88\!\cdots\!47\)\( p^{48} T^{32} + 2137885117158 p^{64} T^{36} + p^{80} T^{40} \)
43 \( ( 1 - 23865226 T^{2} + 280677245179149 T^{4} - \)\(21\!\cdots\!24\)\( T^{6} + \)\(11\!\cdots\!30\)\( T^{8} - \)\(44\!\cdots\!60\)\( T^{10} + \)\(11\!\cdots\!30\)\( p^{8} T^{12} - \)\(21\!\cdots\!24\)\( p^{16} T^{14} + 280677245179149 p^{24} T^{16} - 23865226 p^{32} T^{18} + p^{40} T^{20} )^{2} \)
47 \( 1 - 39156456358302 T^{4} + \)\(15\!\cdots\!69\)\( T^{8} - \)\(62\!\cdots\!04\)\( T^{12} + \)\(39\!\cdots\!78\)\( p T^{16} - \)\(41\!\cdots\!36\)\( T^{20} + \)\(39\!\cdots\!78\)\( p^{17} T^{24} - \)\(62\!\cdots\!04\)\( p^{32} T^{28} + \)\(15\!\cdots\!69\)\( p^{48} T^{32} - 39156456358302 p^{64} T^{36} + p^{80} T^{40} \)
53 \( ( 1 + 34865706 T^{2} + 614155494714637 T^{4} + \)\(76\!\cdots\!60\)\( T^{6} + \)\(76\!\cdots\!14\)\( T^{8} + \)\(64\!\cdots\!32\)\( T^{10} + \)\(76\!\cdots\!14\)\( p^{8} T^{12} + \)\(76\!\cdots\!60\)\( p^{16} T^{14} + 614155494714637 p^{24} T^{16} + 34865706 p^{32} T^{18} + p^{40} T^{20} )^{2} \)
59 \( 1 - 428757914085342 T^{4} + \)\(10\!\cdots\!05\)\( T^{8} - \)\(14\!\cdots\!24\)\( T^{12} + \)\(12\!\cdots\!14\)\( T^{16} - \)\(91\!\cdots\!28\)\( T^{20} + \)\(12\!\cdots\!14\)\( p^{16} T^{24} - \)\(14\!\cdots\!24\)\( p^{32} T^{28} + \)\(10\!\cdots\!05\)\( p^{48} T^{32} - 428757914085342 p^{64} T^{36} + p^{80} T^{40} \)
61 \( ( 1 - 2102 T + 35645621 T^{2} - 107984499544 T^{3} + 844980337729706 T^{4} - 1771987045502293444 T^{5} + 844980337729706 p^{4} T^{6} - 107984499544 p^{8} T^{7} + 35645621 p^{12} T^{8} - 2102 p^{16} T^{9} + p^{20} T^{10} )^{4} \)
67 \( ( 1 + 1812 T + 1641672 T^{2} - 140775782852 T^{3} - 148981727955119 T^{4} + 2804169560311225656 T^{5} + \)\(15\!\cdots\!92\)\( T^{6} + \)\(10\!\cdots\!04\)\( T^{7} - \)\(10\!\cdots\!02\)\( T^{8} - \)\(23\!\cdots\!80\)\( T^{9} + \)\(44\!\cdots\!92\)\( T^{10} - \)\(23\!\cdots\!80\)\( p^{4} T^{11} - \)\(10\!\cdots\!02\)\( p^{8} T^{12} + \)\(10\!\cdots\!04\)\( p^{12} T^{13} + \)\(15\!\cdots\!92\)\( p^{16} T^{14} + 2804169560311225656 p^{20} T^{15} - 148981727955119 p^{24} T^{16} - 140775782852 p^{28} T^{17} + 1641672 p^{32} T^{18} + 1812 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
71 \( 1 + 368598935837154 T^{4} + \)\(61\!\cdots\!33\)\( T^{8} + \)\(38\!\cdots\!24\)\( T^{12} + \)\(29\!\cdots\!82\)\( T^{16} + \)\(29\!\cdots\!16\)\( T^{20} + \)\(29\!\cdots\!82\)\( p^{16} T^{24} + \)\(38\!\cdots\!24\)\( p^{32} T^{28} + \)\(61\!\cdots\!33\)\( p^{48} T^{32} + 368598935837154 p^{64} T^{36} + p^{80} T^{40} \)
73 \( ( 1 + 10866 T + 59034978 T^{2} + 386404953010 T^{3} + 1329607557863485 T^{4} - 812923667910635976 T^{5} - \)\(12\!\cdots\!96\)\( T^{6} - \)\(93\!\cdots\!92\)\( T^{7} + \)\(37\!\cdots\!58\)\( T^{8} + \)\(72\!\cdots\!60\)\( T^{9} + \)\(37\!\cdots\!64\)\( T^{10} + \)\(72\!\cdots\!60\)\( p^{4} T^{11} + \)\(37\!\cdots\!58\)\( p^{8} T^{12} - \)\(93\!\cdots\!92\)\( p^{12} T^{13} - \)\(12\!\cdots\!96\)\( p^{16} T^{14} - 812923667910635976 p^{20} T^{15} + 1329607557863485 p^{24} T^{16} + 386404953010 p^{28} T^{17} + 59034978 p^{32} T^{18} + 10866 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
79 \( ( 1 + 2596 T + 63922325 T^{2} - 135507983536 T^{3} + 2076994237683578 T^{4} - 10654532650746409384 T^{5} + 2076994237683578 p^{4} T^{6} - 135507983536 p^{8} T^{7} + 63922325 p^{12} T^{8} + 2596 p^{16} T^{9} + p^{20} T^{10} )^{4} \)
83 \( 1 - 2477306882093406 T^{4} + \)\(93\!\cdots\!33\)\( T^{8} + \)\(88\!\cdots\!80\)\( T^{12} - \)\(33\!\cdots\!78\)\( T^{16} + \)\(21\!\cdots\!64\)\( T^{20} - \)\(33\!\cdots\!78\)\( p^{16} T^{24} + \)\(88\!\cdots\!80\)\( p^{32} T^{28} + \)\(93\!\cdots\!33\)\( p^{48} T^{32} - 2477306882093406 p^{64} T^{36} + p^{80} T^{40} \)
89 \( 1 + 1001300595451878 T^{4} - \)\(17\!\cdots\!87\)\( T^{8} + \)\(24\!\cdots\!16\)\( T^{12} + \)\(25\!\cdots\!90\)\( T^{16} - \)\(19\!\cdots\!80\)\( T^{20} + \)\(25\!\cdots\!90\)\( p^{16} T^{24} + \)\(24\!\cdots\!16\)\( p^{32} T^{28} - \)\(17\!\cdots\!87\)\( p^{48} T^{32} + 1001300595451878 p^{64} T^{36} + p^{80} T^{40} \)
97 \( ( 1 + 44906 T + 1008274418 T^{2} + 16304202269002 T^{3} + 212618341421644093 T^{4} + \)\(23\!\cdots\!40\)\( T^{5} + \)\(24\!\cdots\!68\)\( T^{6} + \)\(24\!\cdots\!48\)\( T^{7} + \)\(27\!\cdots\!06\)\( T^{8} + \)\(28\!\cdots\!64\)\( T^{9} + \)\(28\!\cdots\!48\)\( T^{10} + \)\(28\!\cdots\!64\)\( p^{4} T^{11} + \)\(27\!\cdots\!06\)\( p^{8} T^{12} + \)\(24\!\cdots\!48\)\( p^{12} T^{13} + \)\(24\!\cdots\!68\)\( p^{16} T^{14} + \)\(23\!\cdots\!40\)\( p^{20} T^{15} + 212618341421644093 p^{24} T^{16} + 16304202269002 p^{28} T^{17} + 1008274418 p^{32} T^{18} + 44906 p^{36} T^{19} + p^{40} T^{20} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.59471019454277398550332287882, −2.58486676702237049715387399984, −2.50498076232447057243580009584, −2.35216941477433349144338542412, −2.33091188578851148290161644404, −2.30171361070833522710915438942, −2.17432040164799402601090448049, −1.96643646188212369632565211454, −1.82403364562149572155366991928, −1.82053402429593218854323197149, −1.74210972008003627546533159529, −1.47826278660584535140429694681, −1.32907598237620676970932270967, −1.32668848843240324041502087594, −1.31111475513047009915235540778, −1.25262630155003519910624023630, −1.12962816173785792185127218874, −1.07672054339819849017378389201, −0.67878243860015004873584697888, −0.57304248762318112211908810548, −0.50372604908056506411279019687, −0.40650273945451378111267861317, −0.39637579951268511824290086870, −0.28941962285927075724413315529, −0.11602454275521653692031729563, 0.11602454275521653692031729563, 0.28941962285927075724413315529, 0.39637579951268511824290086870, 0.40650273945451378111267861317, 0.50372604908056506411279019687, 0.57304248762318112211908810548, 0.67878243860015004873584697888, 1.07672054339819849017378389201, 1.12962816173785792185127218874, 1.25262630155003519910624023630, 1.31111475513047009915235540778, 1.32668848843240324041502087594, 1.32907598237620676970932270967, 1.47826278660584535140429694681, 1.74210972008003627546533159529, 1.82053402429593218854323197149, 1.82403364562149572155366991928, 1.96643646188212369632565211454, 2.17432040164799402601090448049, 2.30171361070833522710915438942, 2.33091188578851148290161644404, 2.35216941477433349144338542412, 2.50498076232447057243580009584, 2.58486676702237049715387399984, 2.59471019454277398550332287882

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.