Dirichlet series
L(s) = 1 | + 1.43e4·4-s − 1.70e6·13-s + 1.04e8·16-s + 5.93e8·25-s + 2.93e9·43-s + 1.42e10·49-s − 2.44e10·52-s + 3.35e9·61-s + 5.21e11·64-s − 1.48e11·79-s + 8.50e12·100-s + 1.34e11·103-s + 3.52e12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 3.66e12·169-s + 4.21e13·172-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 7·4-s − 1.27·13-s + 24.9·16-s + 12.1·25-s + 3.04·43-s + 7.22·49-s − 8.93·52-s + 0.509·61-s + 60.6·64-s − 5.44·79-s + 85.0·100-s + 1.14·103-s + 12.3·121-s − 2.04·169-s + 21.3·172-s + ⋯ |
Functional equation
Invariants
Degree: | \(40\) |
Conductor: | \(3^{40} \cdot 13^{20}\) |
Sign: | $1$ |
Analytic conductor: | \(1.18801\times 10^{39}\) |
Root analytic conductor: | \(9.48135\) |
Motivic weight: | \(11\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((40,\ 3^{40} \cdot 13^{20} ,\ ( \ : [11/2]^{20} ),\ 1 )\) |
Particular Values
\(L(6)\) | \(\approx\) | \(40.89751870\) |
\(L(\frac12)\) | \(\approx\) | \(40.89751870\) |
\(L(\frac{13}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 3 | \( 1 \) |
13 | \( ( 1 + 65714 p T + 1332376701 p^{3} T^{2} + 731596663000 p^{5} T^{3} + 86040315168013232 p^{7} T^{4} + 7411229450981278720 p^{10} T^{5} + 86040315168013232 p^{18} T^{6} + 731596663000 p^{27} T^{7} + 1332376701 p^{36} T^{8} + 65714 p^{45} T^{9} + p^{55} T^{10} )^{2} \) | |
good | 2 | \( ( 1 - 7 p^{10} T^{2} + 1548069 p^{4} T^{4} - 442784653 p^{7} T^{6} + 413403803 p^{18} T^{8} - 402973669767 p^{19} T^{10} + 413403803 p^{40} T^{12} - 442784653 p^{51} T^{14} + 1548069 p^{70} T^{16} - 7 p^{98} T^{18} + p^{110} T^{20} )^{2} \) |
5 | \( ( 1 - 59313194 p T^{2} + 339341417359977 p^{3} T^{4} - \)\(12\!\cdots\!16\)\( p^{5} T^{6} + \)\(36\!\cdots\!26\)\( p^{7} T^{8} - \)\(79\!\cdots\!32\)\( p^{9} T^{10} + \)\(36\!\cdots\!26\)\( p^{29} T^{12} - \)\(12\!\cdots\!16\)\( p^{49} T^{14} + 339341417359977 p^{69} T^{16} - 59313194 p^{89} T^{18} + p^{110} T^{20} )^{2} \) | |
7 | \( ( 1 - 7145296162 T^{2} + 31684008358315057533 T^{4} - \)\(21\!\cdots\!72\)\( p^{2} T^{6} + \)\(54\!\cdots\!18\)\( p^{2} T^{8} - \)\(24\!\cdots\!32\)\( p^{4} T^{10} + \)\(54\!\cdots\!18\)\( p^{24} T^{12} - \)\(21\!\cdots\!72\)\( p^{46} T^{14} + 31684008358315057533 p^{66} T^{16} - 7145296162 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
11 | \( ( 1 - 1760583852022 T^{2} + \)\(13\!\cdots\!09\)\( T^{4} - \)\(58\!\cdots\!36\)\( T^{6} + \)\(17\!\cdots\!10\)\( T^{8} - \)\(46\!\cdots\!64\)\( T^{10} + \)\(17\!\cdots\!10\)\( p^{22} T^{12} - \)\(58\!\cdots\!36\)\( p^{44} T^{14} + \)\(13\!\cdots\!09\)\( p^{66} T^{16} - 1760583852022 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
17 | \( ( 1 + 168616416527594 T^{2} + \)\(14\!\cdots\!09\)\( T^{4} + \)\(87\!\cdots\!32\)\( T^{6} + \)\(39\!\cdots\!38\)\( T^{8} + \)\(14\!\cdots\!16\)\( T^{10} + \)\(39\!\cdots\!38\)\( p^{22} T^{12} + \)\(87\!\cdots\!32\)\( p^{44} T^{14} + \)\(14\!\cdots\!09\)\( p^{66} T^{16} + 168616416527594 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
19 | \( ( 1 - 614851675864042 T^{2} + \)\(19\!\cdots\!01\)\( T^{4} - \)\(40\!\cdots\!24\)\( T^{6} + \)\(65\!\cdots\!98\)\( T^{8} - \)\(84\!\cdots\!48\)\( T^{10} + \)\(65\!\cdots\!98\)\( p^{22} T^{12} - \)\(40\!\cdots\!24\)\( p^{44} T^{14} + \)\(19\!\cdots\!01\)\( p^{66} T^{16} - 614851675864042 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
23 | \( ( 1 + 3235272994600742 T^{2} + \)\(55\!\cdots\!49\)\( T^{4} + \)\(69\!\cdots\!08\)\( T^{6} + \)\(75\!\cdots\!26\)\( T^{8} + \)\(75\!\cdots\!44\)\( T^{10} + \)\(75\!\cdots\!26\)\( p^{22} T^{12} + \)\(69\!\cdots\!08\)\( p^{44} T^{14} + \)\(55\!\cdots\!49\)\( p^{66} T^{16} + 3235272994600742 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
29 | \( ( 1 + 36278838051552914 T^{2} + \)\(83\!\cdots\!41\)\( T^{4} + \)\(16\!\cdots\!04\)\( T^{6} + \)\(25\!\cdots\!46\)\( T^{8} + \)\(32\!\cdots\!68\)\( T^{10} + \)\(25\!\cdots\!46\)\( p^{22} T^{12} + \)\(16\!\cdots\!04\)\( p^{44} T^{14} + \)\(83\!\cdots\!41\)\( p^{66} T^{16} + 36278838051552914 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
31 | \( ( 1 - 144298591895255122 T^{2} + \)\(10\!\cdots\!33\)\( T^{4} - \)\(55\!\cdots\!48\)\( T^{6} + \)\(20\!\cdots\!42\)\( T^{8} - \)\(59\!\cdots\!32\)\( T^{10} + \)\(20\!\cdots\!42\)\( p^{22} T^{12} - \)\(55\!\cdots\!48\)\( p^{44} T^{14} + \)\(10\!\cdots\!33\)\( p^{66} T^{16} - 144298591895255122 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
37 | \( ( 1 - 802788737026637362 T^{2} + \)\(27\!\cdots\!13\)\( T^{4} - \)\(49\!\cdots\!08\)\( T^{6} + \)\(46\!\cdots\!42\)\( T^{8} - \)\(34\!\cdots\!32\)\( T^{10} + \)\(46\!\cdots\!42\)\( p^{22} T^{12} - \)\(49\!\cdots\!08\)\( p^{44} T^{14} + \)\(27\!\cdots\!13\)\( p^{66} T^{16} - 802788737026637362 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
41 | \( ( 1 - 3803956155835832266 T^{2} + \)\(69\!\cdots\!29\)\( T^{4} - \)\(80\!\cdots\!48\)\( T^{6} + \)\(68\!\cdots\!50\)\( T^{8} - \)\(43\!\cdots\!92\)\( T^{10} + \)\(68\!\cdots\!50\)\( p^{22} T^{12} - \)\(80\!\cdots\!48\)\( p^{44} T^{14} + \)\(69\!\cdots\!29\)\( p^{66} T^{16} - 3803956155835832266 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
43 | \( ( 1 - 734249008 T + 4510650370950044223 T^{2} - \)\(25\!\cdots\!44\)\( T^{3} + \)\(82\!\cdots\!66\)\( T^{4} - \)\(35\!\cdots\!32\)\( T^{5} + \)\(82\!\cdots\!66\)\( p^{11} T^{6} - \)\(25\!\cdots\!44\)\( p^{22} T^{7} + 4510650370950044223 p^{33} T^{8} - 734249008 p^{44} T^{9} + p^{55} T^{10} )^{4} \) | |
47 | \( ( 1 - 19918316678871212878 T^{2} + \)\(18\!\cdots\!49\)\( T^{4} - \)\(10\!\cdots\!84\)\( T^{6} + \)\(43\!\cdots\!22\)\( T^{8} - \)\(12\!\cdots\!16\)\( T^{10} + \)\(43\!\cdots\!22\)\( p^{22} T^{12} - \)\(10\!\cdots\!84\)\( p^{44} T^{14} + \)\(18\!\cdots\!49\)\( p^{66} T^{16} - 19918316678871212878 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
53 | \( ( 1 + 25179853773402024866 T^{2} + \)\(39\!\cdots\!09\)\( T^{4} + \)\(32\!\cdots\!28\)\( T^{6} + \)\(18\!\cdots\!98\)\( T^{8} + \)\(76\!\cdots\!44\)\( T^{10} + \)\(18\!\cdots\!98\)\( p^{22} T^{12} + \)\(32\!\cdots\!28\)\( p^{44} T^{14} + \)\(39\!\cdots\!09\)\( p^{66} T^{16} + 25179853773402024866 p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
59 | \( ( 1 - \)\(11\!\cdots\!90\)\( T^{2} + \)\(63\!\cdots\!21\)\( T^{4} - \)\(26\!\cdots\!36\)\( T^{6} + \)\(99\!\cdots\!62\)\( T^{8} - \)\(32\!\cdots\!20\)\( T^{10} + \)\(99\!\cdots\!62\)\( p^{22} T^{12} - \)\(26\!\cdots\!36\)\( p^{44} T^{14} + \)\(63\!\cdots\!21\)\( p^{66} T^{16} - \)\(11\!\cdots\!90\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
61 | \( ( 1 - 839692834 T + \)\(13\!\cdots\!65\)\( T^{2} - \)\(35\!\cdots\!20\)\( T^{3} + \)\(84\!\cdots\!06\)\( T^{4} - \)\(27\!\cdots\!28\)\( T^{5} + \)\(84\!\cdots\!06\)\( p^{11} T^{6} - \)\(35\!\cdots\!20\)\( p^{22} T^{7} + \)\(13\!\cdots\!65\)\( p^{33} T^{8} - 839692834 p^{44} T^{9} + p^{55} T^{10} )^{4} \) | |
67 | \( ( 1 - \)\(76\!\cdots\!62\)\( T^{2} + \)\(30\!\cdots\!45\)\( T^{4} - \)\(77\!\cdots\!00\)\( T^{6} + \)\(14\!\cdots\!34\)\( T^{8} - \)\(20\!\cdots\!56\)\( T^{10} + \)\(14\!\cdots\!34\)\( p^{22} T^{12} - \)\(77\!\cdots\!00\)\( p^{44} T^{14} + \)\(30\!\cdots\!45\)\( p^{66} T^{16} - \)\(76\!\cdots\!62\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
71 | \( ( 1 - \)\(11\!\cdots\!30\)\( T^{2} + \)\(70\!\cdots\!81\)\( T^{4} - \)\(30\!\cdots\!44\)\( T^{6} + \)\(10\!\cdots\!02\)\( T^{8} - \)\(26\!\cdots\!00\)\( T^{10} + \)\(10\!\cdots\!02\)\( p^{22} T^{12} - \)\(30\!\cdots\!44\)\( p^{44} T^{14} + \)\(70\!\cdots\!81\)\( p^{66} T^{16} - \)\(11\!\cdots\!30\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
73 | \( ( 1 - \)\(18\!\cdots\!70\)\( T^{2} + \)\(17\!\cdots\!13\)\( T^{4} - \)\(10\!\cdots\!80\)\( T^{6} + \)\(51\!\cdots\!82\)\( T^{8} - \)\(18\!\cdots\!20\)\( T^{10} + \)\(51\!\cdots\!82\)\( p^{22} T^{12} - \)\(10\!\cdots\!80\)\( p^{44} T^{14} + \)\(17\!\cdots\!13\)\( p^{66} T^{16} - \)\(18\!\cdots\!70\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
79 | \( ( 1 + 37249602404 T + \)\(18\!\cdots\!83\)\( T^{2} + \)\(85\!\cdots\!84\)\( p T^{3} + \)\(25\!\cdots\!98\)\( T^{4} + \)\(62\!\cdots\!28\)\( T^{5} + \)\(25\!\cdots\!98\)\( p^{11} T^{6} + \)\(85\!\cdots\!84\)\( p^{23} T^{7} + \)\(18\!\cdots\!83\)\( p^{33} T^{8} + 37249602404 p^{44} T^{9} + p^{55} T^{10} )^{4} \) | |
83 | \( ( 1 - \)\(10\!\cdots\!02\)\( T^{2} + \)\(49\!\cdots\!69\)\( T^{4} - \)\(14\!\cdots\!56\)\( T^{6} + \)\(30\!\cdots\!62\)\( T^{8} - \)\(46\!\cdots\!64\)\( T^{10} + \)\(30\!\cdots\!62\)\( p^{22} T^{12} - \)\(14\!\cdots\!56\)\( p^{44} T^{14} + \)\(49\!\cdots\!69\)\( p^{66} T^{16} - \)\(10\!\cdots\!02\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
89 | \( ( 1 - \)\(17\!\cdots\!06\)\( T^{2} + \)\(14\!\cdots\!13\)\( T^{4} - \)\(81\!\cdots\!20\)\( T^{6} + \)\(33\!\cdots\!14\)\( T^{8} - \)\(10\!\cdots\!92\)\( T^{10} + \)\(33\!\cdots\!14\)\( p^{22} T^{12} - \)\(81\!\cdots\!20\)\( p^{44} T^{14} + \)\(14\!\cdots\!13\)\( p^{66} T^{16} - \)\(17\!\cdots\!06\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
97 | \( ( 1 - \)\(34\!\cdots\!82\)\( T^{2} + \)\(69\!\cdots\!33\)\( T^{4} - \)\(95\!\cdots\!08\)\( T^{6} + \)\(98\!\cdots\!22\)\( T^{8} - \)\(79\!\cdots\!72\)\( T^{10} + \)\(98\!\cdots\!22\)\( p^{22} T^{12} - \)\(95\!\cdots\!08\)\( p^{44} T^{14} + \)\(69\!\cdots\!33\)\( p^{66} T^{16} - \)\(34\!\cdots\!82\)\( p^{88} T^{18} + p^{110} T^{20} )^{2} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−1.79093131426332470992856236552, −1.72699200029537545557637554968, −1.65880578401681489236153901001, −1.50728726285768694954926247405, −1.38234835731894926946605276518, −1.35068716112911141448158747089, −1.32307668505625585069540084070, −1.14850040294695335526913071017, −1.11963302287260201685349991397, −1.10420257691164125730264346674, −1.03959169100172101849727884766, −0.978954109584008093552250578664, −0.953646232355366916823013326040, −0.953246846716437254848193601616, −0.845031130732693362681701521144, −0.71787598647818502874776105613, −0.66139090889596746294508724203, −0.64730500143762339438765944343, −0.52564770450814157592494959907, −0.50553458840398305344561717964, −0.44971786850280528192799850654, −0.39758962073824696805278366566, −0.36622718670370748872945230711, −0.16943605283748006083619538667, −0.00554531324467586922044425104, 0.00554531324467586922044425104, 0.16943605283748006083619538667, 0.36622718670370748872945230711, 0.39758962073824696805278366566, 0.44971786850280528192799850654, 0.50553458840398305344561717964, 0.52564770450814157592494959907, 0.64730500143762339438765944343, 0.66139090889596746294508724203, 0.71787598647818502874776105613, 0.845031130732693362681701521144, 0.953246846716437254848193601616, 0.953646232355366916823013326040, 0.978954109584008093552250578664, 1.03959169100172101849727884766, 1.10420257691164125730264346674, 1.11963302287260201685349991397, 1.14850040294695335526913071017, 1.32307668505625585069540084070, 1.35068716112911141448158747089, 1.38234835731894926946605276518, 1.50728726285768694954926247405, 1.65880578401681489236153901001, 1.72699200029537545557637554968, 1.79093131426332470992856236552