Properties

Label 40-1012e20-1.1-c0e20-0-0
Degree $40$
Conductor $1.269\times 10^{60}$
Sign $1$
Analytic cond. $1.16614\times 10^{-6}$
Root an. cond. $0.710671$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 3·9-s − 2·11-s + 4·15-s + 23-s + 3·25-s + 2·27-s + 2·31-s − 4·33-s + 2·37-s + 6·45-s − 4·47-s − 2·49-s − 4·53-s − 4·55-s + 2·59-s + 2·67-s + 2·69-s − 9·71-s + 6·75-s + 81-s + 2·89-s + 4·93-s − 9·97-s − 6·99-s − 4·103-s + ⋯
L(s)  = 1  + 2·3-s + 2·5-s + 3·9-s − 2·11-s + 4·15-s + 23-s + 3·25-s + 2·27-s + 2·31-s − 4·33-s + 2·37-s + 6·45-s − 4·47-s − 2·49-s − 4·53-s − 4·55-s + 2·59-s + 2·67-s + 2·69-s − 9·71-s + 6·75-s + 81-s + 2·89-s + 4·93-s − 9·97-s − 6·99-s − 4·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 11^{20} \cdot 23^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 11^{20} \cdot 23^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(40\)
Conductor: \(2^{40} \cdot 11^{20} \cdot 23^{20}\)
Sign: $1$
Analytic conductor: \(1.16614\times 10^{-6}\)
Root analytic conductor: \(0.710671\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1012} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((40,\ 2^{40} \cdot 11^{20} \cdot 23^{20} ,\ ( \ : [0]^{20} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8976366488\)
\(L(\frac12)\) \(\approx\) \(0.8976366488\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
23 \( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} \)
good3 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
5 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
7 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
13 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
17 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
19 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
31 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
37 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
41 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
43 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
47 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{4} \)
53 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{4} \)
59 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
61 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
67 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
71 \( ( 1 + T + T^{2} )^{10}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
73 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
89 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \)
97 \( ( 1 + T + T^{2} )^{10}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.50840867734468697156013684900, −2.37239111456990784558102067393, −2.33354316913659955937506022092, −2.28637901206095405741974425984, −2.26130740103019900343500821850, −2.25872984685277287638829033967, −2.17924985121444152266846600397, −2.15661043249775789286381998682, −2.12349682963730059024146155210, −1.94865326503111943365003384865, −1.83826337412268708660688250405, −1.68900360270520557452273090533, −1.54837841708496927171132103802, −1.52067993671849624553458771564, −1.51604367226125636106096413605, −1.39574282273654730844048537511, −1.38283316194964296163927821638, −1.38153349557450129704591824539, −1.31604613221269916961202128944, −1.26148405251957857343287873247, −1.24439481171539690441374541780, −1.11587726018990973564081752605, −1.09158849883351725535540448693, −0.58905843309168270188019007433, −0.47097564991908686751359007830, 0.47097564991908686751359007830, 0.58905843309168270188019007433, 1.09158849883351725535540448693, 1.11587726018990973564081752605, 1.24439481171539690441374541780, 1.26148405251957857343287873247, 1.31604613221269916961202128944, 1.38153349557450129704591824539, 1.38283316194964296163927821638, 1.39574282273654730844048537511, 1.51604367226125636106096413605, 1.52067993671849624553458771564, 1.54837841708496927171132103802, 1.68900360270520557452273090533, 1.83826337412268708660688250405, 1.94865326503111943365003384865, 2.12349682963730059024146155210, 2.15661043249775789286381998682, 2.17924985121444152266846600397, 2.25872984685277287638829033967, 2.26130740103019900343500821850, 2.28637901206095405741974425984, 2.33354316913659955937506022092, 2.37239111456990784558102067393, 2.50840867734468697156013684900

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.