Properties

Label 4-98e2-1.1-c7e2-0-0
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $937.200$
Root an. cond. $5.53296$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 66·3-s − 400·5-s + 528·6-s + 512·8-s + 2.18e3·9-s + 3.20e3·10-s − 40·11-s + 8.90e3·13-s + 2.64e4·15-s − 4.09e3·16-s + 3.65e4·17-s − 1.74e4·18-s − 4.62e4·19-s + 320·22-s + 1.05e5·23-s − 3.37e4·24-s + 7.81e4·25-s − 7.12e4·26-s − 1.45e5·27-s − 2.52e5·29-s − 2.11e5·30-s − 1.70e5·31-s + 2.64e3·33-s − 2.92e5·34-s − 2.09e4·37-s + 3.69e5·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.41·3-s − 1.43·5-s + 0.997·6-s + 0.353·8-s + 9-s + 1.01·10-s − 0.00906·11-s + 1.12·13-s + 2.01·15-s − 1/4·16-s + 1.80·17-s − 0.707·18-s − 1.54·19-s + 0.00640·22-s + 1.80·23-s − 0.498·24-s + 25-s − 0.794·26-s − 1.42·27-s − 1.92·29-s − 1.42·30-s − 1.03·31-s + 0.0127·33-s − 1.27·34-s − 0.0680·37-s + 1.09·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(937.200\)
Root analytic conductor: \(5.53296\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.1233940028\)
\(L(\frac12)\) \(\approx\) \(0.1233940028\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{3} T + p^{6} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 22 p T + 241 p^{2} T^{2} + 22 p^{8} T^{3} + p^{14} T^{4} \)
5$C_2^2$ \( 1 + 16 p^{2} T + 131 p^{4} T^{2} + 16 p^{9} T^{3} + p^{14} T^{4} \)
11$C_2^2$ \( 1 + 40 T - 19485571 T^{2} + 40 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2$ \( ( 1 - 4452 T + p^{7} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 36502 T + 922057331 T^{2} - 36502 p^{7} T^{3} + p^{14} T^{4} \)
19$C_2^2$ \( 1 + 46222 T + 1242601545 T^{2} + 46222 p^{7} T^{3} + p^{14} T^{4} \)
23$C_2^2$ \( 1 - 105200 T + 7662214553 T^{2} - 105200 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2$ \( ( 1 + 126334 T + p^{7} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 170964 T + 1716075185 T^{2} + 170964 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2^2$ \( 1 + 20954 T - 94492807017 T^{2} + 20954 p^{7} T^{3} + p^{14} T^{4} \)
41$C_2$ \( ( 1 + 318486 T + p^{7} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 1808 p T + p^{7} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 703716 T - 11406911807 T^{2} - 703716 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2^2$ \( 1 + 1603278 T + 1395789205447 T^{2} + 1603278 p^{7} T^{3} + p^{14} T^{4} \)
59$C_2^2$ \( 1 + 1171894 T - 1115315937583 T^{2} + 1171894 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 + 2068872 T + 1137488516363 T^{2} + 2068872 p^{7} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 - 994268 T - 5072142749499 T^{2} - 994268 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 - 33280 T + p^{7} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 2971454 T - 2217859644981 T^{2} + 2971454 p^{7} T^{3} + p^{14} T^{4} \)
79$C_2^2$ \( 1 - 2376168 T - 13557734621935 T^{2} - 2376168 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2$ \( ( 1 - 2122358 T + p^{7} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 6920346 T + 3659853864187 T^{2} - 6920346 p^{7} T^{3} + p^{14} T^{4} \)
97$C_2$ \( ( 1 + 4952710 T + p^{7} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48346560398588895539880741823, −12.25537126037104317625090542957, −11.48412836126144715154916409472, −11.07354074810820030361304728783, −10.90669482047203838526360689586, −10.35584725453718489116231609358, −9.470007529855321400425155368275, −8.980028474831705921957217057880, −8.361573933128953150813374274363, −7.54232579189291028114852102925, −7.49791670691987972983367403836, −6.55955014817735179165764536308, −5.89392227259618397761829601106, −5.31683840427110438640773225745, −4.60507276980472473929963980129, −3.72737412172700193262392760440, −3.39758568627401511175543601775, −1.73130725810530651235184728536, −1.00808163913224526341540845644, −0.17268254506206528242897929979, 0.17268254506206528242897929979, 1.00808163913224526341540845644, 1.73130725810530651235184728536, 3.39758568627401511175543601775, 3.72737412172700193262392760440, 4.60507276980472473929963980129, 5.31683840427110438640773225745, 5.89392227259618397761829601106, 6.55955014817735179165764536308, 7.49791670691987972983367403836, 7.54232579189291028114852102925, 8.361573933128953150813374274363, 8.980028474831705921957217057880, 9.470007529855321400425155368275, 10.35584725453718489116231609358, 10.90669482047203838526360689586, 11.07354074810820030361304728783, 11.48412836126144715154916409472, 12.25537126037104317625090542957, 12.48346560398588895539880741823

Graph of the $Z$-function along the critical line