Properties

Label 4-98e2-1.1-c5e2-0-5
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $247.043$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·3-s + 10·5-s − 32·6-s + 64·8-s + 243·9-s − 40·10-s + 340·11-s + 588·13-s + 80·15-s − 256·16-s + 1.22e3·17-s − 972·18-s + 2.43e3·19-s − 1.36e3·22-s − 2.00e3·23-s + 512·24-s + 3.12e3·25-s − 2.35e3·26-s + 5.32e3·27-s − 1.34e4·29-s − 320·30-s + 8.85e3·31-s + 2.72e3·33-s − 4.90e3·34-s − 9.18e3·37-s − 9.72e3·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.513·3-s + 0.178·5-s − 0.362·6-s + 0.353·8-s + 9-s − 0.126·10-s + 0.847·11-s + 0.964·13-s + 0.0918·15-s − 1/4·16-s + 1.02·17-s − 0.707·18-s + 1.54·19-s − 0.599·22-s − 0.788·23-s + 0.181·24-s + 25-s − 0.682·26-s + 1.40·27-s − 2.97·29-s − 0.0649·30-s + 1.65·31-s + 0.434·33-s − 0.727·34-s − 1.10·37-s − 1.09·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(247.043\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.115155571\)
\(L(\frac12)\) \(\approx\) \(3.115155571\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 - 8 T - 179 T^{2} - 8 p^{5} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 - 2 p T - 121 p^{2} T^{2} - 2 p^{6} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 340 T - 45451 T^{2} - 340 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 - 294 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 1226 T + 83219 T^{2} - 1226 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 - 128 p T + 9525 p^{2} T^{2} - 128 p^{6} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 + 2000 T - 2436343 T^{2} + 2000 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 + 6746 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 8856 T + 49799585 T^{2} - 8856 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 + 9182 T + 14965167 T^{2} + 9182 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 14574 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8108 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 312 T - 229247663 T^{2} + 312 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 14634 T - 204041537 T^{2} - 14634 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 + 27656 T + 49930037 T^{2} + 27656 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 34338 T + 334501943 T^{2} - 34338 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 + 12316 T - 1198441251 T^{2} + 12316 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 520 p T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 61718 T + 1736039931 T^{2} + 61718 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 - 64752 T + 1115765105 T^{2} - 64752 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 - 77056 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 8166 T - 5517375893 T^{2} + 8166 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 20650 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33167229204887440184165386781, −12.67512342289275162792482786010, −12.18977843136608508826676517796, −11.65514350389488905911826455548, −10.79564491667310531605785523060, −10.61289694244564348629076968031, −9.580235374062774738262237550961, −9.556760787207023670902264270398, −9.004362313968316890369180351948, −8.302461948368666604670333827220, −7.56544129747300337121846496260, −7.39097574345423083230729532353, −6.45343580312168920856036236687, −5.79486229727359108365018410088, −4.99533068966914636599288814763, −3.95722977520276445328771021313, −3.59433693640265753009694177848, −2.44248386899417098885041370125, −1.26790760072664839952306218185, −0.951773173265855325772957131715, 0.951773173265855325772957131715, 1.26790760072664839952306218185, 2.44248386899417098885041370125, 3.59433693640265753009694177848, 3.95722977520276445328771021313, 4.99533068966914636599288814763, 5.79486229727359108365018410088, 6.45343580312168920856036236687, 7.39097574345423083230729532353, 7.56544129747300337121846496260, 8.302461948368666604670333827220, 9.004362313968316890369180351948, 9.556760787207023670902264270398, 9.580235374062774738262237550961, 10.61289694244564348629076968031, 10.79564491667310531605785523060, 11.65514350389488905911826455548, 12.18977843136608508826676517796, 12.67512342289275162792482786010, 13.33167229204887440184165386781

Graph of the $Z$-function along the critical line