Properties

Label 4-98e2-1.1-c5e2-0-3
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $247.043$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 10·3-s + 84·5-s + 40·6-s − 64·8-s + 243·9-s + 336·10-s + 336·11-s − 1.16e3·13-s + 840·15-s − 256·16-s − 1.45e3·17-s + 972·18-s + 470·19-s + 1.34e3·22-s + 4.20e3·23-s − 640·24-s + 3.12e3·25-s − 4.67e3·26-s + 6.29e3·27-s + 9.73e3·29-s + 3.36e3·30-s − 7.37e3·31-s + 3.36e3·33-s − 5.83e3·34-s − 1.43e4·37-s + 1.88e3·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.641·3-s + 1.50·5-s + 0.453·6-s − 0.353·8-s + 9-s + 1.06·10-s + 0.837·11-s − 1.91·13-s + 0.963·15-s − 1/4·16-s − 1.22·17-s + 0.707·18-s + 0.298·19-s + 0.592·22-s + 1.65·23-s − 0.226·24-s + 25-s − 1.35·26-s + 1.66·27-s + 2.14·29-s + 0.681·30-s − 1.37·31-s + 0.537·33-s − 0.865·34-s − 1.72·37-s + 0.211·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(247.043\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(6.407170016\)
\(L(\frac12)\) \(\approx\) \(6.407170016\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 - 10 T - 143 T^{2} - 10 p^{5} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 - 84 T + 3931 T^{2} - 84 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 336 T - 48155 T^{2} - 336 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 + 584 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 1458 T + 705907 T^{2} + 1458 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 - 470 T - 2255199 T^{2} - 470 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 - 4200 T + 11203657 T^{2} - 4200 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 4866 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 7372 T + 25717233 T^{2} + 7372 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 + 14330 T + 136004943 T^{2} + 14330 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 + 6222 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 3704 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 1812 T - 226061663 T^{2} + 1812 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 37242 T + 968771071 T^{2} - 37242 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 - 34302 T + 461702905 T^{2} - 34302 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 24476 T - 245521725 T^{2} - 24476 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 17452 T - 1045552803 T^{2} - 17452 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 28224 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 3602 T - 2060097189 T^{2} - 3602 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 42872 T - 1239048015 T^{2} + 42872 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 - 35202 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 26730 T - 4869566549 T^{2} - 26730 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 - 16978 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59211709189217075425446633789, −12.60107257665548804391872865371, −12.56550024395362911986304780062, −11.89767738394204554095450382699, −11.09129105595796595572184127104, −10.22749580723280521425237582562, −10.07722999777935460457955803517, −9.447447841024917438386079117027, −8.802608064368352772233621908433, −8.647096181778386197190966858699, −7.30263430629295054783955835797, −6.78169687999713946472967512441, −6.64656469033934855397053644493, −5.35684189062917643696109525949, −5.03261430322521054081143665524, −4.40404859765846826812380961120, −3.39861724708033735751536243205, −2.50529295948567086069025903300, −2.00664590801002533996666942040, −0.884845058604856041388485971121, 0.884845058604856041388485971121, 2.00664590801002533996666942040, 2.50529295948567086069025903300, 3.39861724708033735751536243205, 4.40404859765846826812380961120, 5.03261430322521054081143665524, 5.35684189062917643696109525949, 6.64656469033934855397053644493, 6.78169687999713946472967512441, 7.30263430629295054783955835797, 8.647096181778386197190966858699, 8.802608064368352772233621908433, 9.447447841024917438386079117027, 10.07722999777935460457955803517, 10.22749580723280521425237582562, 11.09129105595796595572184127104, 11.89767738394204554095450382699, 12.56550024395362911986304780062, 12.60107257665548804391872865371, 13.59211709189217075425446633789

Graph of the $Z$-function along the critical line