Properties

Label 4-98e2-1.1-c5e2-0-2
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $247.043$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 10·3-s − 84·5-s − 40·6-s − 64·8-s + 243·9-s − 336·10-s + 336·11-s + 1.16e3·13-s + 840·15-s − 256·16-s + 1.45e3·17-s + 972·18-s − 470·19-s + 1.34e3·22-s + 4.20e3·23-s + 640·24-s + 3.12e3·25-s + 4.67e3·26-s − 6.29e3·27-s + 9.73e3·29-s + 3.36e3·30-s + 7.37e3·31-s − 3.36e3·33-s + 5.83e3·34-s − 1.43e4·37-s − 1.88e3·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.641·3-s − 1.50·5-s − 0.453·6-s − 0.353·8-s + 9-s − 1.06·10-s + 0.837·11-s + 1.91·13-s + 0.963·15-s − 1/4·16-s + 1.22·17-s + 0.707·18-s − 0.298·19-s + 0.592·22-s + 1.65·23-s + 0.226·24-s + 25-s + 1.35·26-s − 1.66·27-s + 2.14·29-s + 0.681·30-s + 1.37·31-s − 0.537·33-s + 0.865·34-s − 1.72·37-s − 0.211·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(247.043\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.890890804\)
\(L(\frac12)\) \(\approx\) \(2.890890804\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 10 T - 143 T^{2} + 10 p^{5} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 + 84 T + 3931 T^{2} + 84 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 336 T - 48155 T^{2} - 336 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 - 584 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 1458 T + 705907 T^{2} - 1458 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 + 470 T - 2255199 T^{2} + 470 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 - 4200 T + 11203657 T^{2} - 4200 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 4866 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 7372 T + 25717233 T^{2} - 7372 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 + 14330 T + 136004943 T^{2} + 14330 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 6222 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 3704 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 1812 T - 226061663 T^{2} - 1812 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 37242 T + 968771071 T^{2} - 37242 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 + 34302 T + 461702905 T^{2} + 34302 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 + 24476 T - 245521725 T^{2} + 24476 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 17452 T - 1045552803 T^{2} - 17452 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 28224 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 3602 T - 2060097189 T^{2} + 3602 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 42872 T - 1239048015 T^{2} + 42872 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 + 35202 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 26730 T - 4869566549 T^{2} + 26730 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 16978 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14259625871645937250728344062, −12.56882496479216782455908794931, −12.03905232296589243447536208231, −11.93817630139947359479010393122, −11.10586620967538715037104926787, −10.89263815807822240149240516640, −10.17690052465870558289914653280, −9.445144352133877543342587753048, −8.501014717310190225776505175163, −8.461487243225759803942694025533, −7.44199405538043889081754776753, −6.95997025989419267056742272010, −6.28277895233798925854182952573, −5.70288037548559223135520407120, −4.76501827757681356180032702853, −4.22188121943707209568416426724, −3.69738360073889846122990808383, −3.07045766800819100790285523428, −1.22807131874600902171485289198, −0.77764182036053384191011107479, 0.77764182036053384191011107479, 1.22807131874600902171485289198, 3.07045766800819100790285523428, 3.69738360073889846122990808383, 4.22188121943707209568416426724, 4.76501827757681356180032702853, 5.70288037548559223135520407120, 6.28277895233798925854182952573, 6.95997025989419267056742272010, 7.44199405538043889081754776753, 8.461487243225759803942694025533, 8.501014717310190225776505175163, 9.445144352133877543342587753048, 10.17690052465870558289914653280, 10.89263815807822240149240516640, 11.10586620967538715037104926787, 11.93817630139947359479010393122, 12.03905232296589243447536208231, 12.56882496479216782455908794931, 13.14259625871645937250728344062

Graph of the $Z$-function along the critical line