Properties

Label 4-98e2-1.1-c3e2-0-2
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $33.4336$
Root an. cond. $2.40461$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 8·3-s + 14·5-s − 16·6-s − 8·8-s + 27·9-s + 28·10-s + 28·11-s + 36·13-s − 112·15-s − 16·16-s − 74·17-s + 54·18-s − 80·19-s + 56·22-s + 112·23-s + 64·24-s + 125·25-s + 72·26-s − 136·27-s + 380·29-s − 224·30-s − 72·31-s − 224·33-s − 148·34-s + 346·37-s − 160·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.53·3-s + 1.25·5-s − 1.08·6-s − 0.353·8-s + 9-s + 0.885·10-s + 0.767·11-s + 0.768·13-s − 1.92·15-s − 1/4·16-s − 1.05·17-s + 0.707·18-s − 0.965·19-s + 0.542·22-s + 1.01·23-s + 0.544·24-s + 25-s + 0.543·26-s − 0.969·27-s + 2.43·29-s − 1.36·30-s − 0.417·31-s − 1.18·33-s − 0.746·34-s + 1.53·37-s − 0.683·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(33.4336\)
Root analytic conductor: \(2.40461\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.931714027\)
\(L(\frac12)\) \(\approx\) \(1.931714027\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 8 T + 37 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 14 T + 71 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 28 T - 547 T^{2} - 28 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 18 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 74 T + 563 T^{2} + 74 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 80 T - 459 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 112 T + 377 T^{2} - 112 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 190 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 72 T - 24607 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 346 T + 69063 T^{2} - 346 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 162 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 412 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 24 T - 103247 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 6 p T - 17 p^{2} T^{2} + 6 p^{4} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 200 T - 165379 T^{2} - 200 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 198 T - 187777 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 716 T + 211893 T^{2} - 716 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 392 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 538 T - 99573 T^{2} + 538 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 240 T - 435439 T^{2} + 240 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 1072 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 810 T - 48869 T^{2} + 810 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 1354 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23534341828736522045330952780, −13.20371472894862286672934778707, −12.76744530243510483156187460648, −12.14999325219835497599682072968, −11.49620874362813336611085072604, −11.12883665890889697133001382975, −10.79692042750257337933759432529, −9.847055857361340957179909248261, −9.703584351821489114195542910520, −8.621210715449709086793515304330, −8.483499966845826358509697583367, −6.88775802726927260919374450678, −6.66969774693845423182921770203, −5.95097404480670622678660658443, −5.81582514513634347794317059811, −4.63025257367326125683904459209, −4.62893088822233280156749678283, −3.26867368760505626465876652682, −2.04158525727052133325109303156, −0.818734667486362094071737159048, 0.818734667486362094071737159048, 2.04158525727052133325109303156, 3.26867368760505626465876652682, 4.62893088822233280156749678283, 4.63025257367326125683904459209, 5.81582514513634347794317059811, 5.95097404480670622678660658443, 6.66969774693845423182921770203, 6.88775802726927260919374450678, 8.483499966845826358509697583367, 8.621210715449709086793515304330, 9.703584351821489114195542910520, 9.847055857361340957179909248261, 10.79692042750257337933759432529, 11.12883665890889697133001382975, 11.49620874362813336611085072604, 12.14999325219835497599682072968, 12.76744530243510483156187460648, 13.20371472894862286672934778707, 14.23534341828736522045330952780

Graph of the $Z$-function along the critical line