Properties

Label 4-98e2-1.1-c11e2-0-2
Degree $4$
Conductor $9604$
Sign $1$
Analytic cond. $5669.73$
Root an. cond. $8.67742$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s − 396·3-s + 7.35e3·5-s − 1.26e4·6-s − 3.27e4·8-s + 1.77e5·9-s + 2.35e5·10-s + 1.08e5·11-s + 1.27e6·13-s − 2.91e6·15-s − 1.04e6·16-s − 9.22e6·17-s + 5.66e6·18-s − 7.55e6·19-s + 3.48e6·22-s − 2.64e7·23-s + 1.29e7·24-s + 4.88e7·25-s + 4.06e7·26-s − 1.48e8·27-s − 3.39e8·29-s − 9.31e7·30-s − 5.13e7·31-s − 4.30e7·33-s − 2.95e8·34-s + 2.51e8·37-s − 2.41e8·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.940·3-s + 1.05·5-s − 0.665·6-s − 0.353·8-s + 9-s + 0.743·10-s + 0.203·11-s + 0.949·13-s − 0.989·15-s − 1/4·16-s − 1.57·17-s + 0.707·18-s − 0.700·19-s + 0.144·22-s − 0.858·23-s + 0.332·24-s + 25-s + 0.671·26-s − 1.98·27-s − 3.07·29-s − 0.699·30-s − 0.322·31-s − 0.191·33-s − 1.11·34-s + 0.596·37-s − 0.494·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9604 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9604\)    =    \(2^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5669.73\)
Root analytic conductor: \(8.67742\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9604,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.4988030264\)
\(L(\frac12)\) \(\approx\) \(0.4988030264\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{5} T + p^{10} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 44 p^{2} T - 251 p^{4} T^{2} + 44 p^{13} T^{3} + p^{22} T^{4} \)
5$C_2^2$ \( 1 - 294 p^{2} T + 8311 p^{4} T^{2} - 294 p^{13} T^{3} + p^{22} T^{4} \)
11$C_2^2$ \( 1 - 108780 T - 273478582211 T^{2} - 108780 p^{11} T^{3} + p^{22} T^{4} \)
13$C_2$ \( ( 1 - 635842 T + p^{11} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 9225918 T + 50845666635091 T^{2} + 9225918 p^{11} T^{3} + p^{22} T^{4} \)
19$C_2^2$ \( 1 + 7555372 T - 59406612839835 T^{2} + 7555372 p^{11} T^{3} + p^{22} T^{4} \)
23$C_2^2$ \( 1 + 26489400 T - 251121445553927 T^{2} + 26489400 p^{11} T^{3} + p^{22} T^{4} \)
29$C_2$ \( ( 1 + 169827594 T + p^{11} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 51362704 T - 22770349534213215 T^{2} + 51362704 p^{11} T^{3} + p^{22} T^{4} \)
37$C_2^2$ \( 1 - 251605906 T - 114612089845379577 T^{2} - 251605906 p^{11} T^{3} + p^{22} T^{4} \)
41$C_2$ \( ( 1 - 928817814 T + p^{11} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 1818895756 T + p^{11} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 523343136 T - 2198271177085697807 T^{2} - 523343136 p^{11} T^{3} + p^{22} T^{4} \)
53$C_2^2$ \( 1 + 4199520078 T + 8366932956152934487 T^{2} + 4199520078 p^{11} T^{3} + p^{22} T^{4} \)
59$C_2^2$ \( 1 - 154917444 p T + 15336418636838197 p^{2} T^{2} - 154917444 p^{12} T^{3} + p^{22} T^{4} \)
61$C_2^2$ \( 1 + 6639312802 T + 566556871365252543 T^{2} + 6639312802 p^{11} T^{3} + p^{22} T^{4} \)
67$C_2^2$ \( 1 - 2878139188 T - \)\(11\!\cdots\!39\)\( T^{2} - 2878139188 p^{11} T^{3} + p^{22} T^{4} \)
71$C_2$ \( ( 1 + 4345596360 T + p^{11} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 23450332826 T + \)\(23\!\cdots\!99\)\( T^{2} - 23450332826 p^{11} T^{3} + p^{22} T^{4} \)
79$C_2^2$ \( 1 - 28761853648 T + 79250414741449979025 T^{2} - 28761853648 p^{11} T^{3} + p^{22} T^{4} \)
83$C_2$ \( ( 1 - 5577757548 T + p^{11} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 78002173386 T + \)\(33\!\cdots\!07\)\( T^{2} - 78002173386 p^{11} T^{3} + p^{22} T^{4} \)
97$C_2$ \( ( 1 - 26685859630 T + p^{11} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77499067863489095778932900187, −11.27070439859897224250080298079, −11.12654797530554112049290677344, −10.62149105969894929014112283751, −9.755635028373877927984090844220, −9.430592567842418704787787401084, −8.951157409759220364530487580500, −8.129558058104097529465156902447, −7.38340651081392684834870044439, −6.65870112328431451788996550235, −6.11679224482734745609628844624, −5.94493633483124887003304093402, −5.18706282801328196236293315642, −4.66098445756697882203369114424, −3.85132848559974115127018772846, −3.61141853388469553346131318240, −2.07922621717804686222116671841, −2.07393754172117069496895141245, −1.21865433188877782805500490675, −0.15500098466309583674697467108, 0.15500098466309583674697467108, 1.21865433188877782805500490675, 2.07393754172117069496895141245, 2.07922621717804686222116671841, 3.61141853388469553346131318240, 3.85132848559974115127018772846, 4.66098445756697882203369114424, 5.18706282801328196236293315642, 5.94493633483124887003304093402, 6.11679224482734745609628844624, 6.65870112328431451788996550235, 7.38340651081392684834870044439, 8.129558058104097529465156902447, 8.951157409759220364530487580500, 9.430592567842418704787787401084, 9.755635028373877927984090844220, 10.62149105969894929014112283751, 11.12654797530554112049290677344, 11.27070439859897224250080298079, 12.77499067863489095778932900187

Graph of the $Z$-function along the critical line