L(s) = 1 | − 2-s − 4-s − 7·5-s + 3·8-s − 3·9-s + 7·10-s − 16-s − 11·17-s + 3·18-s + 19-s + 7·20-s + 27·25-s + 9·31-s − 5·32-s + 11·34-s + 3·36-s − 38-s − 21·40-s + 21·45-s − 5·49-s − 27·50-s + 8·59-s + 9·61-s − 9·62-s + 7·64-s − 25·67-s + 11·68-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 3.13·5-s + 1.06·8-s − 9-s + 2.21·10-s − 1/4·16-s − 2.66·17-s + 0.707·18-s + 0.229·19-s + 1.56·20-s + 27/5·25-s + 1.61·31-s − 0.883·32-s + 1.88·34-s + 1/2·36-s − 0.162·38-s − 3.32·40-s + 3.13·45-s − 5/7·49-s − 3.81·50-s + 1.04·59-s + 1.15·61-s − 1.14·62-s + 7/8·64-s − 3.05·67-s + 1.33·68-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 987696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C2 | 1+pT2 |
| 19 | C1 | 1−T |
good | 5 | C2×C2 | (1+3T+pT2)(1+4T+pT2) |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1+16T2+p2T4 |
| 17 | C2×C2 | (1+4T+pT2)(1+7T+pT2) |
| 23 | C22 | 1−4T2+p2T4 |
| 29 | C22 | 1+15T2+p2T4 |
| 31 | C2×C2 | (1−5T+pT2)(1−4T+pT2) |
| 37 | C22 | 1+22T2+p2T4 |
| 41 | C22 | 1+17T2+p2T4 |
| 43 | C22 | 1−31T2+p2T4 |
| 47 | C22 | 1+8T2+p2T4 |
| 53 | C22 | 1−101T2+p2T4 |
| 59 | C2×C2 | (1−13T+pT2)(1+5T+pT2) |
| 61 | C2×C2 | (1−7T+pT2)(1−2T+pT2) |
| 67 | C2×C2 | (1+11T+pT2)(1+14T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1+13T+pT2) |
| 73 | C2×C2 | (1−T+pT2)(1+7T+pT2) |
| 79 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 83 | C22 | 1−20T2+p2T4 |
| 89 | C22 | 1−103T2+p2T4 |
| 97 | C22 | 1+34T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66940097960079654968343320759, −7.52528882656985284840224685193, −7.07576097962381727671007390031, −6.53385733939255667419175852884, −6.11934030024318110818189433734, −5.12892818867964033948783241084, −4.75188746992265904775058613465, −4.34326336593079571239619710955, −4.09178962006457974942008104448, −3.53767065607358261145384427024, −2.96679856343838499555264092530, −2.32469560550463480321015561966, −1.03533847979788543800629084484, 0, 0,
1.03533847979788543800629084484, 2.32469560550463480321015561966, 2.96679856343838499555264092530, 3.53767065607358261145384427024, 4.09178962006457974942008104448, 4.34326336593079571239619710955, 4.75188746992265904775058613465, 5.12892818867964033948783241084, 6.11934030024318110818189433734, 6.53385733939255667419175852884, 7.07576097962381727671007390031, 7.52528882656985284840224685193, 7.66940097960079654968343320759