Properties

Label 4-987696-1.1-c1e2-0-0
Degree $4$
Conductor $987696$
Sign $1$
Analytic cond. $62.9763$
Root an. cond. $2.81704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 4-s − 4·5-s + 2·6-s − 3·8-s + 3·9-s − 4·10-s − 2·12-s − 8·15-s − 16-s − 12·17-s + 3·18-s − 19-s + 4·20-s − 6·24-s + 2·25-s + 4·27-s − 8·30-s + 16·31-s + 5·32-s − 12·34-s − 3·36-s − 38-s + 12·40-s − 12·45-s − 2·48-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s − 1.06·8-s + 9-s − 1.26·10-s − 0.577·12-s − 2.06·15-s − 1/4·16-s − 2.91·17-s + 0.707·18-s − 0.229·19-s + 0.894·20-s − 1.22·24-s + 2/5·25-s + 0.769·27-s − 1.46·30-s + 2.87·31-s + 0.883·32-s − 2.05·34-s − 1/2·36-s − 0.162·38-s + 1.89·40-s − 1.78·45-s − 0.288·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(987696\)    =    \(2^{4} \cdot 3^{2} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(62.9763\)
Root analytic conductor: \(2.81704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 987696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.080897756\)
\(L(\frac12)\) \(\approx\) \(1.080897756\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
19$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.238253561689615963456339949883, −7.921460871442440189837475718707, −7.39080902187563863728417650807, −6.68569466352490003812219927306, −6.46787589567348650226556085189, −6.10768231212675033255659362088, −5.05425533805193220116651473777, −4.56991321080597356703354311172, −4.37618629394185670620160142247, −4.15975883116735153333531420145, −3.44365518362789223021999993571, −3.04853305484647947479311614764, −2.53461503012656985065918963823, −1.75844151919507482866111198427, −0.38916689889120047822199203465, 0.38916689889120047822199203465, 1.75844151919507482866111198427, 2.53461503012656985065918963823, 3.04853305484647947479311614764, 3.44365518362789223021999993571, 4.15975883116735153333531420145, 4.37618629394185670620160142247, 4.56991321080597356703354311172, 5.05425533805193220116651473777, 6.10768231212675033255659362088, 6.46787589567348650226556085189, 6.68569466352490003812219927306, 7.39080902187563863728417650807, 7.921460871442440189837475718707, 8.238253561689615963456339949883

Graph of the $Z$-function along the critical line