Properties

Label 4-980000-1.1-c1e2-0-0
Degree $4$
Conductor $980000$
Sign $1$
Analytic cond. $62.4856$
Root an. cond. $2.81154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 4·9-s + 16-s + 4·18-s − 12·29-s − 32-s − 4·36-s − 12·37-s − 7·49-s − 12·53-s + 12·58-s + 64-s + 4·72-s + 12·74-s + 7·81-s + 7·98-s + 12·106-s + 4·109-s + 36·113-s − 12·116-s − 22·121-s + 127-s − 128-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 4/3·9-s + 1/4·16-s + 0.942·18-s − 2.22·29-s − 0.176·32-s − 2/3·36-s − 1.97·37-s − 49-s − 1.64·53-s + 1.57·58-s + 1/8·64-s + 0.471·72-s + 1.39·74-s + 7/9·81-s + 0.707·98-s + 1.16·106-s + 0.383·109-s + 3.38·113-s − 1.11·116-s − 2·121-s + 0.0887·127-s − 0.0883·128-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(980000\)    =    \(2^{5} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(62.4856\)
Root analytic conductor: \(2.81154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 980000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5466883037\)
\(L(\frac12)\) \(\approx\) \(0.5466883037\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
5 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 100 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 104 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 76 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110658889510898732304582937668, −7.83907468238400266851940214611, −7.29352345837928406323819739763, −6.93521779634098499502560239431, −6.37212138742066738013944826790, −5.93784728662927089770286099022, −5.53261463807676054125487781511, −5.12538733530545440171177828433, −4.53924472595404667271186754504, −3.72028976828626557217306577048, −3.32856029125952418423355197897, −2.88347882202976614876074513114, −2.01306260891470067015653642288, −1.66378421862957417480655272149, −0.36742749720328815144260887896, 0.36742749720328815144260887896, 1.66378421862957417480655272149, 2.01306260891470067015653642288, 2.88347882202976614876074513114, 3.32856029125952418423355197897, 3.72028976828626557217306577048, 4.53924472595404667271186754504, 5.12538733530545440171177828433, 5.53261463807676054125487781511, 5.93784728662927089770286099022, 6.37212138742066738013944826790, 6.93521779634098499502560239431, 7.29352345837928406323819739763, 7.83907468238400266851940214611, 8.110658889510898732304582937668

Graph of the $Z$-function along the critical line