Properties

Label 4-975e2-1.1-c1e2-0-36
Degree $4$
Conductor $950625$
Sign $1$
Analytic cond. $60.6126$
Root an. cond. $2.79023$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 3·7-s − 6·11-s + 2·12-s − 7·13-s + 6·19-s − 3·21-s − 6·23-s + 27-s − 6·28-s − 6·29-s + 6·33-s + 7·39-s − 12·41-s − 43-s + 12·44-s − 49-s + 14·52-s − 24·53-s − 6·57-s − 6·59-s − 61-s + 8·64-s − 15·67-s + 6·69-s − 18·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 1.13·7-s − 1.80·11-s + 0.577·12-s − 1.94·13-s + 1.37·19-s − 0.654·21-s − 1.25·23-s + 0.192·27-s − 1.13·28-s − 1.11·29-s + 1.04·33-s + 1.12·39-s − 1.87·41-s − 0.152·43-s + 1.80·44-s − 1/7·49-s + 1.94·52-s − 3.29·53-s − 0.794·57-s − 0.781·59-s − 0.128·61-s + 64-s − 1.83·67-s + 0.722·69-s − 2.13·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(950625\)    =    \(3^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(60.6126\)
Root analytic conductor: \(2.79023\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 950625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + 7 T + p T^{2} \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 12 T + 89 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + T - 42 T^{2} + p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 6 T + 71 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 15 T + 142 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 18 T + 179 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 12 T + 137 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.670613633660325487730464257980, −9.651715615506368687536095045272, −8.939055122074977073629508138444, −8.584250861254240999058392445136, −7.911030600551024386461923548373, −7.75599880232631505058479938482, −7.50064747390494244364191570336, −7.02286014279295953272144916573, −6.18808933732839416372932720253, −5.75750726649752517900508221771, −5.17307383378504087078451922997, −5.08615404826134296847720932980, −4.49952413052877564035388332568, −4.48956763572689170067062061150, −3.21632049637395201077392991657, −3.04759202969689392374417843759, −2.06555189694570825403784157666, −1.62653516659400084362747731031, 0, 0, 1.62653516659400084362747731031, 2.06555189694570825403784157666, 3.04759202969689392374417843759, 3.21632049637395201077392991657, 4.48956763572689170067062061150, 4.49952413052877564035388332568, 5.08615404826134296847720932980, 5.17307383378504087078451922997, 5.75750726649752517900508221771, 6.18808933732839416372932720253, 7.02286014279295953272144916573, 7.50064747390494244364191570336, 7.75599880232631505058479938482, 7.911030600551024386461923548373, 8.584250861254240999058392445136, 8.939055122074977073629508138444, 9.651715615506368687536095045272, 9.670613633660325487730464257980

Graph of the $Z$-function along the critical line