L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s − 2·11-s − 8·13-s + 5·16-s + 6·17-s − 4·22-s − 3·25-s − 16·26-s − 4·29-s − 8·31-s + 6·32-s + 12·34-s − 8·37-s − 18·41-s + 8·43-s − 6·44-s − 8·47-s − 6·50-s − 24·52-s − 8·53-s − 8·58-s + 8·59-s + 8·61-s − 16·62-s + 7·64-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s − 0.603·11-s − 2.21·13-s + 5/4·16-s + 1.45·17-s − 0.852·22-s − 3/5·25-s − 3.13·26-s − 0.742·29-s − 1.43·31-s + 1.06·32-s + 2.05·34-s − 1.31·37-s − 2.81·41-s + 1.21·43-s − 0.904·44-s − 1.16·47-s − 0.848·50-s − 3.32·52-s − 1.09·53-s − 1.05·58-s + 1.04·59-s + 1.02·61-s − 2.03·62-s + 7/8·64-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1+T)2 |
good | 5 | C22 | 1+3T2+p2T4 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C22 | 1+10T2+p2T4 |
| 23 | C22 | 1+39T2+p2T4 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | D4 | 1+8T+62T2+8pT3+p2T4 |
| 41 | C2 | (1+9T+pT2)2 |
| 43 | D4 | 1−8T+74T2−8pT3+p2T4 |
| 47 | D4 | 1+8T+pT2+8pT3+p2T4 |
| 53 | C2 | (1+4T+pT2)2 |
| 59 | D4 | 1−8T+22T2−8pT3+p2T4 |
| 61 | D4 | 1−8T+75T2−8pT3+p2T4 |
| 67 | D4 | 1+6T+31T2+6pT3+p2T4 |
| 71 | D4 | 1−16T+178T2−16pT3+p2T4 |
| 73 | D4 | 1+20T+218T2+20pT3+p2T4 |
| 79 | D4 | 1−16T+215T2−16pT3+p2T4 |
| 83 | D4 | 1+10T+79T2+10pT3+p2T4 |
| 89 | D4 | 1+16T+214T2+16pT3+p2T4 |
| 97 | D4 | 1+2T+83T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.29259832148892851819981694914, −7.10526583277237411484371916517, −6.89472688844500263623394192790, −6.57701248164210012835587204339, −5.85317841156047568771201320891, −5.68183884219909896951411680855, −5.28343170654185137238223581323, −5.25832770121441114498776103726, −4.79588018584106298209245175258, −4.53232244814853763024583822035, −3.80923680177797962015715438576, −3.78526277519252135488512400289, −3.18004995943381606656949025677, −3.03379175806038509593832848952, −2.46507451911545987819100337845, −2.07583230112106834888351709169, −1.73059376129159953175002230519, −1.22940663671762592696668762357, 0, 0,
1.22940663671762592696668762357, 1.73059376129159953175002230519, 2.07583230112106834888351709169, 2.46507451911545987819100337845, 3.03379175806038509593832848952, 3.18004995943381606656949025677, 3.78526277519252135488512400289, 3.80923680177797962015715438576, 4.53232244814853763024583822035, 4.79588018584106298209245175258, 5.25832770121441114498776103726, 5.28343170654185137238223581323, 5.68183884219909896951411680855, 5.85317841156047568771201320891, 6.57701248164210012835587204339, 6.89472688844500263623394192790, 7.10526583277237411484371916517, 7.29259832148892851819981694914