Properties

Label 4-9702e2-1.1-c1e2-0-11
Degree $4$
Conductor $94128804$
Sign $1$
Analytic cond. $6001.73$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 2·11-s + 5·16-s − 4·22-s − 2·25-s + 16·29-s − 6·32-s + 12·37-s + 8·43-s + 6·44-s + 4·50-s − 12·53-s − 32·58-s + 7·64-s − 8·67-s − 12·71-s − 24·74-s + 24·79-s − 16·86-s − 8·88-s − 6·100-s + 24·106-s + 12·107-s − 32·109-s + 28·113-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s + 0.603·11-s + 5/4·16-s − 0.852·22-s − 2/5·25-s + 2.97·29-s − 1.06·32-s + 1.97·37-s + 1.21·43-s + 0.904·44-s + 0.565·50-s − 1.64·53-s − 4.20·58-s + 7/8·64-s − 0.977·67-s − 1.42·71-s − 2.78·74-s + 2.70·79-s − 1.72·86-s − 0.852·88-s − 3/5·100-s + 2.33·106-s + 1.16·107-s − 3.06·109-s + 2.63·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94128804\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6001.73\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 94128804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.102729754\)
\(L(\frac12)\) \(\approx\) \(2.102729754\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 116 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83537852237884681634256797932, −7.79394677271858966291240320679, −7.15135258304350382991587790599, −6.93988656316684509968173879860, −6.46505940166794844496082829937, −6.38101463117460336181610633857, −5.87160508176530926687417747915, −5.80418408996490465920566023651, −5.06006049345489177531043577097, −4.72885407415905713250781579951, −4.27712163915908655512124860579, −4.16645886722254976304676497846, −3.35612778805216071383875098354, −3.11690799875524098890339725048, −2.68234948616775023940103290074, −2.38203924329561205200159889109, −1.75024583276606341035035693639, −1.40557896966829901778368330167, −0.72042165436700170120877742735, −0.61773261242621826508170215345, 0.61773261242621826508170215345, 0.72042165436700170120877742735, 1.40557896966829901778368330167, 1.75024583276606341035035693639, 2.38203924329561205200159889109, 2.68234948616775023940103290074, 3.11690799875524098890339725048, 3.35612778805216071383875098354, 4.16645886722254976304676497846, 4.27712163915908655512124860579, 4.72885407415905713250781579951, 5.06006049345489177531043577097, 5.80418408996490465920566023651, 5.87160508176530926687417747915, 6.38101463117460336181610633857, 6.46505940166794844496082829937, 6.93988656316684509968173879860, 7.15135258304350382991587790599, 7.79394677271858966291240320679, 7.83537852237884681634256797932

Graph of the $Z$-function along the critical line