Properties

Label 4-960e2-1.1-c2e2-0-1
Degree $4$
Conductor $921600$
Sign $1$
Analytic cond. $684.246$
Root an. cond. $5.11449$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4·7-s + 7·9-s − 16·13-s − 68·19-s − 16·21-s − 5·25-s − 8·27-s − 28·31-s − 112·37-s − 64·39-s + 16·43-s − 86·49-s − 272·57-s + 92·61-s − 28·63-s + 64·67-s − 212·73-s − 20·75-s + 44·79-s − 95·81-s + 64·91-s − 112·93-s + 244·97-s + 92·103-s − 172·109-s − 448·111-s + ⋯
L(s)  = 1  + 4/3·3-s − 4/7·7-s + 7/9·9-s − 1.23·13-s − 3.57·19-s − 0.761·21-s − 1/5·25-s − 0.296·27-s − 0.903·31-s − 3.02·37-s − 1.64·39-s + 0.372·43-s − 1.75·49-s − 4.77·57-s + 1.50·61-s − 4/9·63-s + 0.955·67-s − 2.90·73-s − 0.266·75-s + 0.556·79-s − 1.17·81-s + 0.703·91-s − 1.20·93-s + 2.51·97-s + 0.893·103-s − 1.57·109-s − 4.03·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(921600\)    =    \(2^{12} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(684.246\)
Root analytic conductor: \(5.11449\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{960} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 921600,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1657221435\)
\(L(\frac12)\) \(\approx\) \(0.1657221435\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 4 T + p^{2} T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
good7$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 398 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 562 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 56 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2642 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2798 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 3998 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6782 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 46 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 7202 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 106 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 802 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )( 1 + 142 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 122 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27031986222473461554232989866, −9.524273282757000756199871412323, −9.118978451100420091197476767229, −8.680285281306647633795237966054, −8.525633931278637609715214723554, −8.134609862340740780574186722470, −7.52813389568998078755277365171, −7.08720872370114604604500864754, −6.80588003077565684524346316474, −6.25865477663952060907457636548, −5.86284035377005353613753788068, −5.05128004537681554955987827971, −4.75949693762202876921760705207, −4.02452094794655916058919034238, −3.76027099340612729199892786225, −3.18226903869817267690756138309, −2.54798884398105559920064248145, −2.01715223581250885196040851799, −1.80135884099285689381505521473, −0.10623871064250059973254483543, 0.10623871064250059973254483543, 1.80135884099285689381505521473, 2.01715223581250885196040851799, 2.54798884398105559920064248145, 3.18226903869817267690756138309, 3.76027099340612729199892786225, 4.02452094794655916058919034238, 4.75949693762202876921760705207, 5.05128004537681554955987827971, 5.86284035377005353613753788068, 6.25865477663952060907457636548, 6.80588003077565684524346316474, 7.08720872370114604604500864754, 7.52813389568998078755277365171, 8.134609862340740780574186722470, 8.525633931278637609715214723554, 8.680285281306647633795237966054, 9.118978451100420091197476767229, 9.524273282757000756199871412323, 10.27031986222473461554232989866

Graph of the $Z$-function along the critical line