| L(s) = 1 | − 2·5-s − 9-s − 25-s − 12·29-s + 12·41-s + 2·45-s + 14·49-s − 4·61-s + 81-s − 12·89-s + 36·101-s − 4·109-s − 6·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
| L(s) = 1 | − 0.894·5-s − 1/3·9-s − 1/5·25-s − 2.22·29-s + 1.87·41-s + 0.298·45-s + 2·49-s − 0.512·61-s + 1/9·81-s − 1.27·89-s + 3.58·101-s − 0.383·109-s − 0.545·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.81706552807626892857758910269, −7.48338772749818714505568862053, −7.31414232466857730933129396429, −6.69870749611038333772551723895, −6.03438952703145271774101768318, −5.70201317814651153452203024464, −5.39326706574893587457044809903, −4.48627776084144012044871884963, −4.33238226241526149413056171450, −3.61648993994344421664285367047, −3.38512121277280170811029879169, −2.49070897317790405437217147394, −2.04167265474318643663512908647, −0.996214829704843253444326290526, 0,
0.996214829704843253444326290526, 2.04167265474318643663512908647, 2.49070897317790405437217147394, 3.38512121277280170811029879169, 3.61648993994344421664285367047, 4.33238226241526149413056171450, 4.48627776084144012044871884963, 5.39326706574893587457044809903, 5.70201317814651153452203024464, 6.03438952703145271774101768318, 6.69870749611038333772551723895, 7.31414232466857730933129396429, 7.48338772749818714505568862053, 7.81706552807626892857758910269