| L(s) = 1 | + 2·3-s − 2·5-s + 2·7-s + 3·9-s + 6·11-s − 4·15-s − 10·17-s + 10·19-s + 4·21-s + 2·23-s − 25-s + 4·27-s + 10·29-s + 12·33-s − 4·35-s − 6·45-s + 10·47-s + 2·49-s − 20·51-s − 12·53-s − 12·55-s + 20·57-s + 10·59-s − 2·61-s + 6·63-s + 4·69-s + 10·73-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.894·5-s + 0.755·7-s + 9-s + 1.80·11-s − 1.03·15-s − 2.42·17-s + 2.29·19-s + 0.872·21-s + 0.417·23-s − 1/5·25-s + 0.769·27-s + 1.85·29-s + 2.08·33-s − 0.676·35-s − 0.894·45-s + 1.45·47-s + 2/7·49-s − 2.80·51-s − 1.64·53-s − 1.61·55-s + 2.64·57-s + 1.30·59-s − 0.256·61-s + 0.755·63-s + 0.481·69-s + 1.17·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.639878196\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.639878196\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13390554114030883258052801730, −9.470699761749704744869609264212, −9.426505913954670150834015433642, −8.901973742228694135986098614004, −8.668692728317559641115132535490, −8.130304995549508034832464742253, −7.86664830873683711510135873319, −7.33239343214184704711105346939, −6.82963197761125988078887888828, −6.73391383274102402782164596612, −6.08916887645060216933744696519, −5.31155363448019129218815294690, −4.58448892338414335863802584597, −4.57927297839479369730202278074, −3.82672208139228783270265163502, −3.61943083380974864244881459489, −2.84823519295779480135423030485, −2.35220409108836255471492392404, −1.52283366765786604601504134874, −0.933276557439396517521425656918,
0.933276557439396517521425656918, 1.52283366765786604601504134874, 2.35220409108836255471492392404, 2.84823519295779480135423030485, 3.61943083380974864244881459489, 3.82672208139228783270265163502, 4.57927297839479369730202278074, 4.58448892338414335863802584597, 5.31155363448019129218815294690, 6.08916887645060216933744696519, 6.73391383274102402782164596612, 6.82963197761125988078887888828, 7.33239343214184704711105346939, 7.86664830873683711510135873319, 8.130304995549508034832464742253, 8.668692728317559641115132535490, 8.901973742228694135986098614004, 9.426505913954670150834015433642, 9.470699761749704744869609264212, 10.13390554114030883258052801730