| L(s) = 1 | + 2·5-s + 9-s − 4·13-s + 12·17-s + 3·25-s + 12·29-s − 4·37-s − 12·41-s + 2·45-s + 2·49-s + 12·53-s + 20·61-s − 8·65-s + 4·73-s + 81-s + 24·85-s + 36·89-s + 4·97-s − 36·101-s + 20·109-s − 36·113-s − 4·117-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 0.894·5-s + 1/3·9-s − 1.10·13-s + 2.91·17-s + 3/5·25-s + 2.22·29-s − 0.657·37-s − 1.87·41-s + 0.298·45-s + 2/7·49-s + 1.64·53-s + 2.56·61-s − 0.992·65-s + 0.468·73-s + 1/9·81-s + 2.60·85-s + 3.81·89-s + 0.406·97-s − 3.58·101-s + 1.91·109-s − 3.38·113-s − 0.369·117-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.912152815\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.912152815\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.307525687782695431948900879973, −7.71052407307967077644420749342, −7.26843774815325716692994821945, −6.76895238282715006434981339956, −6.55369649177171482035005226183, −5.77106186730486543398971536544, −5.48025531888955534300415720953, −4.95941068749140901060295823906, −4.84143328212506167706839183620, −3.69936628544405197022333195268, −3.58551752676900090223959184299, −2.69384090145739289224125918540, −2.39041205999551187286748903960, −1.43294542786364492056174526795, −0.889333176383366415114391202530,
0.889333176383366415114391202530, 1.43294542786364492056174526795, 2.39041205999551187286748903960, 2.69384090145739289224125918540, 3.58551752676900090223959184299, 3.69936628544405197022333195268, 4.84143328212506167706839183620, 4.95941068749140901060295823906, 5.48025531888955534300415720953, 5.77106186730486543398971536544, 6.55369649177171482035005226183, 6.76895238282715006434981339956, 7.26843774815325716692994821945, 7.71052407307967077644420749342, 8.307525687782695431948900879973